首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid procedure has been developed for the mutual separation of antimony and arsenic using tribenzylamine as the extracting agent. The extraction behaviours of Sb(III), Sb(V), As(III), As(V) and Au(III) have been studied as a function of the acidity of the aqueous phase. Various factors which affect the extraction of these complexes have been studied and optimized. The procedure was then applied to lead base alloy for the simultaneous determination of antimony, arsenic and copper. Chemical recoveries were quantitative and only about one hour is required for the chemical processing of duplicate samples.  相似文献   

2.
Summary Regarding the favourably sensitive nuclear characteristics of iodine and of selenium but the very different half lives of their induced nuclides 128I and 75Se, a radiochemical neutron activation analysis method for simultaneous determination of these elements in a single sample was developed. It is based on the double irradiation LICSIR technique — Long Irradiation for Se (40h), Cooling (a week or more), Short Irradiation for iodine (1–15 min) with following Radiochemistry. After the second short irradiation, the sample is ignited in an oxygen flask and iodine and selenium are sequentially and selectively extracted as elemental iodine and 5-nitro-2,1,3 benzoselena diazole chelate. With the described method biological samples were analysed and the reliability of the results was checked by the analyses of different standard reference materials. Good agreement with certified values and high radiochemical purity of the spectra show the applicability of the radiochemical separation developed.  相似文献   

3.
Summary A radiochemical neutron activation analysis (RNAA) for simultaneous determination of uranium and vanadium in a single sample at trace levels is described. The method is based on post-irradiation wet-ashing and solvent extraction of vanadium with N-benzoyl-N-phenyl-hydroxylamine reagent. From the remaining aqueous phase, uranium is extracted into a toluene solution of tri-n-butyl phosphate. The chemical yields are determined spectrophotometrically for vanadium and by gamma-counting of the added natural uranium carrier for uranium. The method was evaluated by the analysis of reference materials and the results showed a good agreement with the certified values. The method was applied to the determination of vanadium and uranium in five military total diet samples in Slovenia.  相似文献   

4.
The determination of medium and long-lived nuclides can be combined with short-lived ones if a medium or long irradiation is made prior to the short irradiation and radiochemical processing. Thus, an RNAA method previously developed for determination of iodine based on the reaction127I(n,)128I (T 1/2=25 m) using oxygen flask ignition of the irradiated sample, followed by solvent extraction with an iodine-iodide redox cycle, was combined with an overnight preirradiation to induce the235U fission product133I (T 1/2=20.8 h). By reactivating the sample, cooled 1–2 days after the first irradiation, for few minutes both128I and133I could be quantified in the separated iodine fraction. Non-combustible inorganic materials (e.g., sediment, soil, etc.) can be successfully ignited after mixing with excess cellulose powder. Chemical yields for iodine were determined spectrophotometrically in the organic phase, while homogeneously spiked Whatman cellulose powder was used as uranium standard. Mercury is also released on ignition and collected in the absorbing solution, from where it was separated by toluene extraction. Its chemical yield was determined for each aliquot using203Hg tracer and counting on an LEPD. Results for some suitable SRMs are presented, and the general features of the double irradiation technique discussed.  相似文献   

5.
A method for the simultaneous, radiochemical neutron activation analysis of uranium and thorium at trace levels in biological materials is described, based on a technique known as LICSIR, in which a double neutron irradiation is employed. In the first, long irradiation233Pa (27.0 d) is induced by neutron capture on232Th and then the sample is cooled for several weeks. A second short irradiation to induce239U (23.5 m) is followed by a rapid sequential radiochemical separation by solvent extraction of239U with TBP and233Pa with TOPO. Chemical yields of239U and233Pa were measured for each sample aliquot using added235U and231Pa tracers from the -spectra of the separated fractions. The technique was validated by quality control analyses.  相似文献   

6.
A rapid non-destructive activation analysis method has been developed for the determination of antimony. A high resolution low energy Ge detector is used to measure the 61.6 keV γ-ray from122mSb (T=4.2 min). Sensitivities and detection limits for biological and environmental samples activated with thermal and epithermal neutrons are listed. The time required for the anlaysis is about 12 min per sample using thermal activation and 22 minutes using epithermal activation analysis.  相似文献   

7.
New types of correction for chemical yield and counting geometry in conjunction with the comparator method provide significant improvements in reproducibility and sensitivity compared to direct neutron activation analysis.  相似文献   

8.
A method for the determination of arsenic and antimony in niobium, with simultaneous determinations of Au, Cu and Mo, is described. The samples are irradiated for 12 h in a thermal neutron flux of 8 × 1013 n cm-2 s-1 and then dissolved in hydrofluoric —nitric acid. After addition of various masking agents, and reduction with potassium iodide, As(III) and Sb(III) are extracted with diethylammoniumdiethyldithiocarbamate in chloroform. Before reduction, Au, Cu and Mo can be extracted as dithiocarbamates and determined. For samples of about 100 mg, the limits of detection are 10 pg g-1 for As, 20 pg g-1 for Sb, 0.8 pg g-1 for Au, 10 pg g-1 for Cu and 25 ng g-1 for Mo. Results are given for niobium samples of different grades of purity.  相似文献   

9.
A simple and sensitive radiochemical neutron activation analysis (RNAA) method has been developed for the simultaneous determination of mercury and selenium in biological materials. The radiochemical procedure is based upon the digestion of irradiated samples with sulphuric and nitric acids followed by subsequent extractions of mercury and selenium into toluene, first of mercury from 7.5 M H2SO4-0.01M HBr media and after of selenium from 7M H2SO4-1 M HBr media. After washing of the organic phases with similar media, the mercury bromide was back-extracted into 0.034M EDTA in 5% aqueous ammonia and the selenium bromide into 0.14M H2O2 in aqueous solution. The197Hg and the75Se were counted on a Ge(Li) detector. The precision and accuracy of the method was checked by analysing NBS Standard Reference Materials: orchard leaves and bovine liver.  相似文献   

10.
A simple and accurate method has been developed for the determination of copper, mercury and antimony by thermal neutron activation analysis involving substoichiometric extraction technique. The results of analysis indicate that copper, mercury and antimony in biological samples can be determined with an accuracy of 5.3%, 5.5% and 6.2%, respectively. Two samples and a standard can be analysed by the proposed method in about 4 hrs. Part of this work was presented at the International Conference on Modern Trends in Activation Analysis, Saclay, Paris, France, October 2–6, 1972.  相似文献   

11.
A rapid method has been developed for the determination of mercury in environmental samples by thermal neutron activation analysis. Radiochemical separation involves the extraction of Hg/II/ with substoichiometric amounts of 2-mercaptobenzothiazole /2-HMBT/ into chloroform1. The time required for radiochemical purification and counting of two samples and a standard is about 2 h. Water, sludge and IAEA standard samples were analyzed for Hg concentration by this method.  相似文献   

12.
Simple and effective procedures for the determination of Re, Os and Ir by radiochemical neutron activation analysis are presented. Those elements are separated individually by distillation (for Os) and anion exchange techniques (for Re and Ir) for a single specimen. Reproducibilities of the data obtained by the present procedures are evaluated by replicate analyses of the Allende meteorite sample, and are deduced to be 3% for Re, 6% for Os and 4% for Ir (1). Detection limits for the present procedures are calculated to be 1 ppb for Re, 20 ppb for Os and 5 ppb for Ir. These procedures were applied to Antarctic meteorites and proved to work very effectively for the determination of trace Re, Os and Ir in chondrite meteorites.  相似文献   

13.
A nondestructive method for the analysis of Sb and Cl in synthetic rubbers by 14 MeV neutron activation analysis has been developed and evaluated by comparisons with microanalytical and thermal neutron activation analysis results. The method is most precise when a rubber with known amounts of Sb and Cl is used as a standard. Samples containing 0.07 to 2.5 wt.% Sb and 2.5 to 15.9 wt.% Cl have been analyzed and precision for the method is 10% or better. Antimony and Cl detection limits are 0.02 and 0.5 wt.% respectively. Agreement among the three methods is excellent; the thermal activation analysis method is more precise and simpler to apply if only Sb needs to be determined in a sample. This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC04-76-DP00789. A U.S. DOE facility.  相似文献   

14.
To identify and improve the analytical technique for air pollution research, four kinds of environmental standard samples, i.e., airbome particulate matter, coal flyash, soil and pine needle supplied from the NIST and the IAEA were analyzed using thermal and epithermal neutron activation techniques. Sample irradiation was done at the irradiation facilities (neutron flux, 1 · 1013 n·cm–2·s–1) of the TRIGA MARK-III Research Reactor in the Korea Atomic Energy Research Institute. The accuracy and precision for the analysis of 40 trace and toxic elements in the samples were compared with the certified and reported values, respectively. In the analytical results of all standard reference materials, the relative standard deviation were within the 15% except for 11 elements and the relative error were agreed within the 10–20% except for 13 elements. The benefit of epithermal activation was investigated and the optimum analytical condition is reported.  相似文献   

15.
A delayed neutron counting system has been implemented at the HANARO research reactor in 2007. Thermal neutron flux measured at the NAA #2 irradiation hole coupled to the delayed counting system, was higher than 3 × 1013 n cm−2 s−1. The delayed neutron counting system is composed of 18 3He detectors which are divided into three groups with six detectors and the collected signals of each group are processed to a digital signal. The count numbers were measured with the uranium mass by using NIST SRMs under fixed analytical condition and their correlation could be determined. Finally, delayed neutron activation analysis has been carried out for the determination of uranium mass fraction in the collected environmental samples.  相似文献   

16.
Summary The determination of thallium in biological materials sometimes cause problems because of the low concentrations of this toxic element. In the present work a method is described which optimizes the parameters affecting the specificity and sensitivity of the radiochemical NAA of thallium in biological samples. High thermal neutron flux, complete decomposition of the organic matter by pressurized digestion, TlI precipitations, liquid extraction of HTlBr4 and La(OH)3 scavenging purification are the steps leading to the final homogeneous preparation of Tl2CrO4 for -activity measurement. The method was applied to various materials as bovine liver, bone and nails. Good agreement was found between certified and determined thallium concentrations of the reference material CRM 176. The chemical yield comes to about 80%, with low deviations. The sensitivity of the method is about 10–3 g/g, the standard deviations being in the range of 3.6% (CRM 176), 14% (bovine liver), and 17% (bone). Detailed working instructions are given.  相似文献   

17.
Summary Radiochemical neutron activation procedures using liquid-liquid extraction with tetraphenylarsonium chloride in chloroform from 1M HCl and solid extraction with ALIQUAT 336 incorporated in a polyacrylonitrile binding matrix from 0.1M HCl were developed for accurate determination of rhenium in biological and environmental samples at the sub-ng . g-1 level. Concentrations of Re in the range of 0.1 to 2.4 ng . g-1 were determined in several botanical reference materials (RM), while in a RM of road dust a value of ~10 ng . g-1 was found. Significantly elevated values of Re, up to 90 ng . g-1 were found in seaweed (brown algae). Results for Re in the brown algae Fucus vesiculosus in which elevated 99Tc values had previously been determined suggested possible competition between Re and Tc in the accumulation process.  相似文献   

18.
Radiochemical NAA methods have been developed for the simultaneous determination of Fe and Zn in biological samples. The method involves reactor irradiation, dissolution in 3M HCl and solvent extraction followed by counting on a scintillation gamma-ray spectrometer. Iron was separated with aqueous cupferron and extracted into chloroform while Zn was extracted with 2-thenoyl trifluoroacetone (TTA) into methyl isobutyl ketone (MIBK). Reaction conditions such as pH and the effect of solvents and various ions were studied using tracer activities. The methods have been employed for trace level determination of Fe and Zn in NBS, SRMs, Bowen's Kale, IAEA CRMs and other plant leaves.  相似文献   

19.
A rapid and sensitive procedure for the determination of antimony and arsenic in biological material is described. It is based on thermal neutron activation to 122Sb (t12 = 2.7 d) and 76As (t12 = 26.4 h), dry ashing with magnesium nitrate as the oxidizing agent and volatilization of the hydrides which are collected on an active carbon trap. This carbon adsorber is counted. The limit of determination is 5 ng g-1 for both elements.  相似文献   

20.
The measurement uncertainty of iodine determination in NIST standard reference material (SRM) 1549 using radiochemical neutron activation analysis (RNAA) was studied. This method is based on ignition of the irradiated sample [127I(n,)128I, t1/2=25 min, E=422.9 keV] in an oxygen atmosphere, followed by absorption of iodine in a reducing acid solution and its purification by a selective extraction–stripping–reextraction cycle. The purified solution of iodine in CHCl3 was transferred to a well-type HPGe detector for -ray measurement of the induced radionuclide 128I. The detection limit of the method employed under the conditions described was 1 ng/g. The reproducibility of iodine determination in the SRM was 3.6% (12 determinations within 1 month), calculated by the analysis of variance procedure. Using the commercially available software program GUM Workbench and the recommendations of the Eurachem/CITAC Guide, we evaluated the uncertainty budget for this RNAA method and the relative uncertainty obtained was 3.6%. The largest uncertainty contributions were due to the repeatability of the chemical yield determination, the count rate of the induced nuclide in the standard and sample, the mass of the carrier and the mass of the irradiation standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号