首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following limit theorem on Hamiltonian systems (resp. corresponding Riccati matrix equations) is shown: Given(N, N)-matrices,A, B, C andn ∈ {1,…, N} with the following properties:A and kemelB(x) are constant, rank(I, A, …, A n?1) B(x)≠N,B(x)C n(R), andB(x)(A T)j-1 C(x)∈C n-j(R) forj=1, …, n. Then \(\mathop {\lim }\limits_{x \to x_0 } \eta _1^T \left( x \right)V\left( x \right)U^{ - 1} \left( x \right)\eta _2 \left( x \right) = d_1^T \left( {x_0 } \right)U\left( {x_0 } \right)d_2 \) forx 0R, whenever the matricesU(x), V(x) are a conjoined basis of the differential systemU′=AU + BV, V′=CU?A TV, and whenever ηi(x)∈R N satisfy ηi(x 0)=U(x 0)d i ∈ imageU(x 0) η′i-Aηni(x) ∈ imageB(x),B(x)(η′i(x)-Aηi(x)) ∈C n-1 R fori=1,2.  相似文献   

2.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

3.
On the interval [t 0, ∞), we consider the following group pursuit problem with one evader: 1 $$ z_i^{(l)} + a_1 (t)z_i^{(l - 1)} + a_2 (t)z_i^{(l - 2)} + \cdots + a_l (t)z_i = u_i - v, u_i ,v \in V, z_i^{(q)} (t_0 ) = z_i^q , $$ where z i , u i , vR v , (v ≥ 2), V is a strictly convex compact set in R v , the functions a 1(t), a 2(t), …, a l (t) are continuous, i = 1, 2, …, n and q = 0, 1, …, l ? 1. Let ? q (t, s) be the solution of the Cauchy problem $$ \begin{gathered} \omega ^{(l)} + a_1 (t)\omega ^{(l - 1)} + a_2 (t)\omega ^{(l - 2)} + \cdots + a_l (t)\omega = 0, \omega ^{(q)} (s) = 1, \hfill \\ \omega ^{(r)} (s) = 0, r = 0, \ldots q - 1,q + 1, \ldots ,l - 1, \hfill \\ \end{gathered} $$ and let $$ \xi _\iota (t) = \varphi _0 (t,t_0 )Z_i^0 + \varphi _1 (t,t_0 )Z_i^1 + \cdots + \varphi _{l - 1} (t,t_0 )Z_i^{l - 1} . $$ We prove that if there exist continuous functions α i (t) and ξ i 1 (t) such that the ξ i 1 (t) are Bohr almost periodic on [t 0, ∞), α i (t) > 0 for all tt 0, lim t→∞(ξ i 1 (t) ? α i (t)ξ i (t)) = 0, lim t→∞(min i α i (t) ∝ t0 t |? l?1(t, s)| ds) = ∞, and there exist points h i 0 H i 1 = {ξ i 1 (t), t ∈ [0, ∞)} such that 0 ∈ Int co{h i 0 }, then the pursuit problem with evader discrimination is solvable.  相似文献   

4.
Let k ≥ 2 be an integer. A function f: V(G) → {?1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k ? 1. That is, Σ xN[v] f(x) ≤ k ? 1 for every vV(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σ vV(G) f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number α s k (G) of G. In this work, we mainly present upper bounds on α s k (G), as for example α s k (G) ≤ n ? 2?(Δ(G) + 2 ? k)/2?, and we prove the Nordhaus-Gaddum type inequality $\alpha _S^k \left( G \right) + \alpha _S^k \left( {\bar G} \right) \leqslant n + 2k - 3$ , where n is the order, Δ(G) the maximum degree and $\bar G$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.  相似文献   

5.
Let N be the stabilizer of the word w = s 1 t 1 s 1 ?1 t 1 ?1 s g t g s g ?1 t g ?1 in the group of automorphisms Aut(F 2g ) of the free group with generators ?ub;s i, t i?ub; i=1,…,g . The fundamental group π1g) of a two-dimensional compact orientable closed surface of genus g in generators ?ub;s i, t i?ub; is determined by the relation w = 1. In the present paper, we find elements S i, T iN determining the conjugation by the generators s i, t i in Aut(π1g)). Along with an element βN, realizing the conjugation by w, they generate the kernel of the natural epimorphism of the group N on the mapping class group M g,0 = Aut(π1g))/Inn(π1g)). We find the system of defining relations for this kernel in the generators S 1, …, S g, T 1, …, T g, α. In addition, we have found a subgroup in N isomorphic to the braid group B g on g strings, which, under the abelianizing of the free group F 2g , is mapped onto the subgroup of the Weyl group for Sp(2g, ?) consisting of matrices that contain only 0 and 1.  相似文献   

6.
In the space A (θ) of all one-valued functions f(z) analytic in an arbitrary region G ? ? (0 ∈ G) with the topology of compact convergence, we establish necessary and sufficient conditions for the equivalence of the operators L 1 n z n Δ n + ... + α1 zΔ+α0 E and L 2= z n a n (z n + ... + za 1(z)Δ+a 0(z)E, where δ: (Δ?)(z)=(f(z)-?(0))/z is the Pommier operator in A(G), n ∈ ?, α n ∈ ?, a k (z) ∈ A(G), 0≤kn, and the following condition is satisfied: Σ j=s n?1 α j+1 ∈ 0, s=0,1,...,n?1. We also prove that the operators z s+1Δ+β(z)E, β(z) ∈ A R , s ∈ ?, and z s+1 are equivalent in the spaces A R, 0?R?-∞, if and only if β(z) = 0.  相似文献   

7.
Let f: [0, 1] × R2R be a function satisfying Caratheodory’s conditions and e(t) ∈ L1[0, 1]. Let ηi ∈ (0, 1), i = 1, …, k, with 0 s< η1 < … < ηk < 1, be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problem . Conditions for the existence of a solution for the above boundary value problem are given using Leray Schauder Continuation theorem.  相似文献   

8.
Let G be an abelian group, let s be a sequence of terms s 1, s 2, …, s n G not all contained in a coset of a proper subgroup of G, and let W be a sequence of n consecutive integers. Let $$W \odot S = \left\{ {w_1 s_1 + \cdots + w_n s_n :w_i a term of W,w_i \ne w_j for i \ne j} \right\},$$ which is a particular kind of weighted restricted sumset. We show that |WS| ≥ min{|G| ? 1, n}, that WS = G if n ≥ |G| + 1, and also characterize all sequences S of length |G| with WSG. This result then allows us to characterize when a linear equation $$a_1 x_1 + \cdots + a_r x_r \equiv \alpha mod n,$$ where α, a 1, …, a r ∈ ? are given, has a solution (x 1, …, x r ) ∈ ? r modulo n with all x i distinct modulo n. As a second simple corollary, we also show that there are maximal length minimal zero-sum sequences over a rank 2 finite abelian group $G \cong C_{n_1 } \oplus C_{n_2 }$ (where n 1 |n 2 and n 2 ≥ 3) having k distinct terms, for any k ε [3, min{n 1 + 1, exp(G)}]. Indeed, apart from a few simple restrictions, any pattern of multiplicities is realizable for such a maximal length minimal zero-sum sequence.  相似文献   

9.
SupposeG n={G 1, ...,G k } is a collection of graphs, all havingn vertices ande edges. By aU-decomposition ofG n we mean a set of partitions of the edge setsE(G t ) of theG i , sayE(G t )== \(\sum\limits_{j = 1}^r {E_{ij} } \) E ij , such that for eachj, all theE ij , 1≦ik, are isomorphic as graphs. Define the functionU(G n) to be the least possible value ofr aU-decomposition ofG n can have. Finally, letU k (n) denote the largest possible valueU(G) can assume whereG ranges over all sets ofk graphs havingn vertices and the same (unspecified) number of edges. In an earlier paper, the authors showed that $$U_2 (n) = \frac{2}{3}n + o(n).$$ In this paper, the value ofU k (n) is investigated fork>2. It turns out rather unexpectedly that the leading term ofU k (n) does not depend onk. In particular we show $$U_k (n) = \frac{3}{4}n + o_k (n),k \geqq 3.$$   相似文献   

10.
A. Mafi  H. Saremi 《Mathematical Notes》2013,94(5-6):642-646
We consider two finitely generated graded modules over a homogeneous Noetherian ring $R = \oplus _{n \in \mathbb{N}_0 } R_n$ with a local base ring (R 0, m0) and irrelevant ideal R + of R. We study the generalized local cohomology modules H b i (M,N) with respect to the ideal b = b0 + R +, where b0 is an ideal of R 0. We prove that if dimR 0/b0 ≤ 1, then the following cases hold: for all i ≥ 0, the R-module H b i (M,N)/a0 H b i (M,N) is Artinian, where $\sqrt {\mathfrak{a}_0 + \mathfrak{b}_0 } = \mathfrak{m}_0$ ; for all i ≥ 0, the set $Ass_{R_0 } \left( {H_\mathfrak{b}^i \left( {M,N} \right)_n } \right)$ is asymptotically stable as n→?∞. Moreover, if H b i (M,N) n is a finitely generated R 0-module for all nn 0 and all j < i, where n 0 ∈ ? and i ∈ ?0, then for all nn 0, the set $Ass_{R_0 } \left( {H_\mathfrak{b}^i \left( {M,N} \right)_n } \right)$ is finite.  相似文献   

11.
Let k ≥ 5 be an odd integer and G = (V(G), E(G)) be a k-edge-connected graph. For ${X\subseteq V(G),e(X)}$ denotes the number of edges between X and V(G) ? X. We here prove that if ${\{s_i,t_i\}\subseteq X_i\subseteq V(G)(i=1,2),f}$ is an edge between s 1 and ${s_2,X_1\cap X_2=\emptyset,e(X_1)\le 2k-3,e(X_2)\le 2k-2}$ , and e(Y) ≥ k + 1 for each ${Y\subseteq V(G)}$ with ${Y\cap\{s_1,t_1,s_2,t_2\}=\{s_1,t_2\}}$ , then there exist paths P 1 and P 2 such that P i joins s i and ${t_i,V(P_i)\subseteq X_i}$ (i = 1, 2) and ${G-f-E(P_1\cup P_2)}$ is (k ? 2)-edge-connected, and in fact we give a generalization of this result.  相似文献   

12.
One presentation of the alternating groupA n hasn?2 generatorss 1,…,sn?2 and relationss 1 3 =s i 2 =(s1?1si)3=(sjsk)2=1, wherei>1 and |j?k|>1. Against this backdrop, a presentation of the alternating semigroupA n c )A n is introduced: It hasn?1 generatorss 1,…,S n?2,e, theA n-relations (above), and relationse 2=e, (es 1)4, (es j)2=(es j)4,es i=s i s 1 -1 es 1, wherej>1 andi≥1.  相似文献   

13.
For an integral polyhedral cone C = pos{a1,…,am, a i ∈ ?d, a subset $\cal B$ (C) ? C ∩ ?d is called a minimal Hilbert basis of C iff (i) each element of C∩?d can be written as a non-negative integral combination of elements of $\cal B$ (C) and (ii) $\cal B$ (C) has minimal cardinality with respect to all subsets of C ∩ ?d for which (i) holds. We give a tight bound for the so-called height of an element of the basis which improves on former results.  相似文献   

14.
Let R be a noncommutative prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R, and L a noncentral Lie ideal of R. If F and G are generalized derivations of R and k ≥1 a fixed integer such that [F(x), x] k x ? x[G(x), x] k = 0 for any xL, then one of the following holds:
  1. either there exists an aU and an αC such that F(x) = xa and G(x) = (a + α)x for all xR
  2. or R satisfies the standard identity s 4(x 1, …, x 4) and one of the following conclusions occurs
  1. there exist a, b, c, qU, such that a ?b + c ?qC and F(x) = ax + xb, G(x) = cx + xq for all xR
  2. there exist a, b, cU and a derivation d of U such that F(x) = ax+d(x) andG(x) = bx+xc?d(x) for all xR, with a + b ? cC.
  相似文献   

15.
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u, v ∈ V (G) there is a vertex w ∈ W such that d(u, w) ≠ d(v, w). A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by dim(G). For a vertex u of G and a subset S of V (G), the distance between u and S is the number min s∈S d(u, s). A k-partition Π = {S 1 , S 2 , . . . , S k } of V (G) is called a resolving partition if for every two distinct vertices u, v ∈ V (G) there is a set S i in Π such that d(u, Si )≠ d(v, Si ). The minimum k for which there is a resolving k-partition of V (G) is called the partition dimension of G, denoted by pd(G). The circulant graph is a graph with vertex set Zn , an additive group of integers modulo n, and two vertices labeled i and j adjacent if and only if i-j (mod n) ∈ C , where CZn has the property that C =-C and 0 ■ C. The circulant graph is denoted by Xn, Δ where Δ = |C|. In this paper, we study the metric dimension of a family of circulant graphs Xn, 3 with connection set C = {1, n/2 , n-1} and prove that dim(Xn, 3 ) is independent of choice of n by showing that dim(Xn, 3 ) ={3 for all n ≡ 0 (mod 4), 4 for all n ≡ 2 (mod 4). We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C = {±1, ±2} and prove that pd(Xn, 4 ) is independent of choice of n and show that pd(X5,4 ) = 5 and pd(Xn,4 ) ={3 for all odd n ≥ 9, 4 for all even n ≥ 6 and n = 7.  相似文献   

16.
Sufficient conditions are obtained for the initial values of nontrivial oscillating (for t=ω) solutions of the nonautonomous quasilinear equation $$y'' \pm \lambda (t)y = F(t,y,y'),$$ wheret ∈ Δ=[a, ω[,-∞ <a < ω ≤+ ∞, λ(t) > 0, λ(t) ∈ C Δ (1) , |F((t,x,y))|≤L(t)(|x|+|y|)1+α, L(t) ≥-0, α ∈ [0,+∞[, F: Δ × R2R,FC Δ×R 2,R is the set of real numbers, and R2 is the two-dimensional real Euclidean space.  相似文献   

17.
For bipartite graphs G 1, G 2, . . . ,G k , the bipartite Ramsey number b(G 1, G 2, . . . , G k ) is the least positive integer b so that any colouring of the edges of K b,b with k colours will result in a copy of G i in the ith colour for some i. A tree of diameter three is called a bistar, and will be denoted by B(s, t), where s ≥ 2 and t ≥ 2 are the degrees of the two support vertices. In this paper we will obtain some exact values for b(B(s, t), B(s, t)) and b(B(s, s), B(s, s)). Furtermore, we will show that if k colours are used, with k ≥ 2 and s ≥ 2, then \({b_{k}(B(s, s)) \leq \lceil k(s - 1) + \sqrt{(s - 1)^{2}(k^{2} - k) - k(2s - 4)} \rceil}\) . Finally, we show that for s ≥ 3 and k ≥ 2, the Ramsey number \({r_{k}(B(s, s)) \leq \lceil 2k(s - 1)+ \frac{1}{2} + \frac{1}{2} \sqrt{(4k(s - 1) + 1)^{2} - 8k(2s^{2} - s - 2)} \rceil}\) .  相似文献   

18.
Given any edge-colored graph G and any commutative unital ring R, we construct a generalized Leavitt path algebra L R (G).We show that L R (G) is a certain free product of L R (G i ), where G i s are 1-colored subgraphs of G. We also show that L R (G) may be written as a free product of simpler algebras. In the end, we define a natural ${\mathbb{Z}}$ -grading for L R (G) and give four necessary conditions for simplicity of L R (G).  相似文献   

19.
The functional equation $$f(x)={1\over 2}\int^{x+1}_{x-1}f(t)\ dt\ \ \ {\rm for}\ \ \ x\ \in\ {\rm R}$$ has the linear functions ?(x) = a + bx (a, b ∈ ?) as trivial solutions. It is shown that there are two kinds of nontrivial solutions, (i) ?(x) = eλi x (i = 1, 2, …), where the λi∈ ? are the fixed points of the map z ? sinh z, and (ii) C-solutions ? for which the values in the interval [?1,1] can be prescribed arbitrarily, but with the provision that ?(j)(? 1) = ?(j)(0) = ?(j)(1) = 0 for all j = 0, 1, 2 …  相似文献   

20.
It is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from thed-dimensional Hardy spaceH p (R×···×R) toL p (R d ) (1/2<p<∞) and is of weak type (H 1 ?i ,L 1) (i=1,…,d), where the Hardy spaceH 1 ?i is defined by a hybrid maximal function. As a consequence, we obtain that the Fejér means of a functionfH 1 ?i ?L(logL) d?1 converge a.e. to the function in question. Moreover, we prove that the Fejér means are uniformly bounded onH p (R×···×R) whenever 1/2<p<∞. Thus, in casefH p (R×···×R) the Fejér means converge tof inH p (R×···×R) norm. The same results are proved for the conjugate Fejér means, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号