首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, an asymptotic method is presented for the analysis of a class of strongly nonlinear autonomous oscillators. The equations governing the amplitude and phase factor are obtained, and the amplitude and stability of the corresponding limit cycles are determined.  相似文献   

3.
The development of vibrations in a one-dimensional chain of coupled oscillators is studied. Under the assumption that the interaction between oscillators is weakly nonlinear the methods of nonlinear mechanics are used to find the time dependence of the displacements of elements of the chain after an initial displacement is given one of the links. The main features of the development of vibrations are shown. A comparison is made with the results of the linear theory.  相似文献   

4.
The approximate nonstationary probability density of a nonlinear single-degree-of-freedom (SDOF) oscillator with time delay subject to Gaussian white noises is studied. First, the time-delayed terms are approximated by those without time delay and the original system can be rewritten as a nonlinear stochastic system without time delay. Then, the stochastic averaging method based on generalized harmonic functions is used to obtain the averaged Itô equation for amplitude of the system response and the associated Fokker–Planck–Kolmogorov (FPK) equation governing the nonstationary probability density of amplitude is deduced. Finally, the approximate solution of the nonstationary probability density of amplitude is obtained by applying the Galerkin method. The approximate solution is expressed as a series expansion in terms of a set of properly selected basis functions with time-dependent coefficients. The proposed method is applied to predict the responses of a Van der Pol oscillator and a Duffing oscillator with time delay subject to Gaussian white noise. It is shown that the results obtained by the proposed procedure agree well with those obtained from Monte Carlo simulation of the original systems.  相似文献   

5.
We study the 1:3 resonant dynamics of a two degree-of-freedom (DOF) dissipative forced strongly nonlinear system by first examining the periodic steady-state solutions of the underlying Hamiltonian system and then the forced and damped configuration. Specifically, we analyze the steady periodic responses of the two DOF system consisting of a grounded strongly nonlinear oscillator with harmonic excitation coupled to a light linear attachment under condition of 1:3 resonance. This system is particularly interesting since it possesses two basic linearized eigenfrequencies in the ratio 3:1, which, under condition of resonance, causes the localization of the fundamental and third-harmonic components of the responses of the grounded nonlinear oscillator and the light linear attachment, respectively. We examine in detail the topological structure of the periodic responses in the frequency–energy domain by computing forced frequency–energy plots (FEPs) in order to deduce the effects of the 1:3 resonance. We perform complexification/averaging analysis and develop analytical approximations for strongly nonlinear steady-state responses, which agree well with direct numerical simulations. In addition, we investigate the effect of the forcing on the 1:3 resonance phenomena and conclude our study with the stability analysis of the steady-state solutions around 1:3 internal resonance, and a discussion of the practical applications of our findings in the area of nonlinear targeted energy transfer.  相似文献   

6.
Coupled strongly nonlinear oscillators, whose characteristic is close to linear for low amplitudes but becomes infinitely growing as the amplitude approaches certain limit, are considered in this paper. Such a model may serve for understanding the dynamics of elastic structures within the restricted space bounded by stiff constraints. In particular, this study focuses on the evolution of vibration modes as the energy is gradually pumped into or dissipates out of the system. For instance, based on the two degrees of freedom system, it is shown that the in-phase and out-of-phase motions may follow qualitatively different scenarios as the system’ energy increases. So the in-phase mode appears to absorb the energy with equipartition between the masses. In contrast, the out-of-phase mode provides equal energy distribution only until certain critical energy level. Then, as a result of bifurcation of the 1:1 resonance path, one of the masses becomes a dominant energy receiver in such a way that it takes the energy not only from the main source but also from another mass.  相似文献   

7.
Piccirillo  Vinícius 《Meccanica》2021,56(2):255-273
Meccanica - This paper proposes a nonfeedback control to suppress the chaotic response of nonlinear oscillators. A linear vibration absorber is used as nonfeedback method, whose key idea is to find...  相似文献   

8.
We consider a one-dimensional linear spring-mass array coupled to a one-dimensional array of uncoupled pendula. The principal aim of this study is to investigate the non-linear dynamics of this large-scale system in the limit of weak non-linearities, i.e. when the (fast) non-linear pendulum effects are small compared to the underlying (slow) linear dynamics of the linear spring-mass chain. We approach the dynamics in the context of invariant manifolds of motion. In particular, we prove the existence of an invariant manifold containing the (predominantly) slow dynamics of the system, with the fast pendulum dynamics providing small perturbations to the motions on the invariant manifold. By restricting the motion on the slow invariant manifold and performing asymptotic analysis we prove that the non-linear large-scale system possesses propagation and attenuation zones (PZs and AZs) in the frequency domain, similarly to the corresponding zones of the linearized system. Inside PZs non-linear travelling wave solutions exist, whereas in AZs only attenuating waves are permissible.  相似文献   

9.
An analytical approximate method for strongly nonlinear damped oscillators is proposed. By introducing phase and amplitude of oscillation as well as a bookkeeping parameter, we rewrite the governing equation into a partial differential equation with solution being a periodic function of the phase. Based on combination of the Newton’s method with the harmonic balance method, the partial differential equation is transformed into a set of linear ordinary differential equations in terms of harmonic coefficients, which can further be converted into systems of linear algebraic equations by using the bookkeeping parameter expansion. Only a few iterations can provide very accurate approximate analytical solutions even if the nonlinearity and damping are significant. The method can be applied to general oscillators with odd nonlinearities as well as even ones even without linear restoring force. Three examples are presented to illustrate the usefulness and effectiveness of the proposed method.  相似文献   

10.
11.
The perturbation-incremental method is applied to determine the separatrices and limit cycles of strongly nonlinear oscillators. Conditions are derived under which a limit cycle is created or destroyed. The latter case may give rise to a homoclinic orbit or a pair of heteroclinic orbits. The limit cycles and the separatrices can be calculated to any desired degree of accuracy. Stability and bifurcations of limit cycles will also be discussed.  相似文献   

12.
Two versions of multiple scales and Krylov–Bogoliubov–Mitropolsky (KBM) methods are extended to obtain the asymptotic solutions of a class of strongly nonlinear oscillators with slowly varying parameters. A comparison of the two methods is made to show that the multiple scales method is equivalent to the KBM method for the first order approximation. An example of pendulum with slowly varying length is given to illustrate the comparison of the two methods.  相似文献   

13.
In this paper, a regular perturbation tool is suggested to bridge the gap between weakly and strongly nonlinear dynamics based on exactly solvable oscillators with trigonometric characteristics considered by Nesterov (Proc. Mosc. Inst. Power Eng. 357:68–70, 1978). It is shown that the corresponding action-angle variables linearize the original oscillators with no special functions involved. As a result, linear and strongly nonlinear areas of the dynamics are described within the same perturbation procedure. The developed tool is applied then to analyzing the nonlinear beat and energy localization phenomena in two linearly coupled Duffing oscillators. It is shown that the principal phase variable describing the beat phenomena is governed by the hardening Nesterov oscillator with some perturbation due to qubic nonlinearity and coupling between the oscillators. As a result, the above class of strongly nonlinear oscillators is given clear physical meaning, whereas a closed form analytical solution is obtained for nonlinear beat and localization dynamics. Based on this solution, necessary and sufficient conditions for onset of energy localization are obtained.  相似文献   

14.
First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations is studied. The motion equation of the system is reduced to a set of averaged Itô stochastic differential equations by stochastic averaging in the case of resonance. Then, the backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function and the conditional probability density and mean first-passage time are obtained by solving the backward Kolmogorov equation and Pontryagin equation with suitable initial and boundary conditions. The procedure is applied to Duffing–van der Pol system in resonant case and the analytical results are verified by Monte Carlo simulation.  相似文献   

15.
16.
This work is concerned with nonlinear oscillators that have a fixed, amplitude-independent frequency. This characteristic, known as isochronicity/isochrony, is achieved by establishing the equivalence between the Lagrangian of the simple harmonic oscillator and the Lagrangian of conservative oscillators with a position-dependent coefficient of the kinetic energy, which can stem from their mass that changes with the displacement or the geometry of motion. Conditions under which such systems have an isochronous center in the origin are discussed. General expressions for the potential energy, equation of motion as well as solutions for a phase trajectory and time response are provided. A few illustrative examples accompanied with numerical verifications are also presented.  相似文献   

17.
18.
Oscillators control many functions of electronic devices, but are subject to uncontrollable perturbations induced by the environment. As a consequence, the influence of perturbations on oscillators is a question of both theoretical and practical importance. In this paper, a method based on Abelian integrals is applied to determine the emergence of limit cycles from centers, in strongly nonlinear oscillators subject to weak dissipative perturbations. It is shown how Abelian integrals can be used to determine which terms of the perturbation are influent. An upper bound to the number of limit cycles is given as a function of the degree of a polynomial perturbation, and the stability of the emerging limit cycles is discussed. Formulas to determine numerically the exact number of limit cycles, their stability, shape and position are given.  相似文献   

19.
Second-order ordinary differential equations (ODEs) with strongly nonlinear damping (cubic nonlinearities) govern surface wave motions that entail nonlinear surface seismic motions. They apply to dynamic crack propagation and nonlinear oscillation problems in physics and nonlinear mechanics. It is shown that the nonlinear surface seismic wave equation (Rayleigh equation) admits several functional transformations and it is possible to reduce it to an equivalent first-order Abel ODE of the second kind in normal form. Based on a recently developed methodology concerning the construction of exact analytic solutions for the type of Abel equations under consideration, exact solutions are obtained for the nonlinear seismic wave (NLSW) equation for initial conditions of the physical problem. The method employed is general and can be applied to a large class of relevant ODEs in mathematical physics and nonlinear mechanics.  相似文献   

20.
Chen  Y. Y.  Chen  S. H. 《Nonlinear dynamics》2009,58(1-2):417-429
Nonlinear Dynamics - The hyperbolic perturbation method is applied to determining the homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators of the form...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号