首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the “fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of “temperature" for a dissipative system out of equilibrium. We consider how this “temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration. Received 26 June 2000 and Received in final form 24 October 2000  相似文献   

2.
We present a time-reversible Born-Oppenheimer molecular dynamics scheme, based on self-consistent Hartree-Fock or density functional theory, where both the nuclear and the electronic degrees of freedom are propagated in time. We show how a time-reversible adiabatic propagation of the electronic degrees of freedom is possible despite the nonlinearity and incompleteness of the self-consistent field procedure. With a time-reversible lossless propagation the simulated dynamics is stabilized with respect to a systematic long-term energy drift and the number of self-consistency cycles can be kept low thanks to a good initial guess given from the electronic propagation. The proposed molecular dynamics scheme therefore combines a low computational cost with a physically correct time-reversible representation, which preserves a detailed balance between propagation forwards and backwards in time.  相似文献   

3.
《Physica A》2006,365(1):120-127
The effect of nearest-neighbor coupling on the thermodynamic and dynamical properties of the ferromagnetic Hamiltonian mean field model (HMF) is studied. For a range of antiferromagnetic nearest-neighbor coupling, a canonical first-order transition is observed, and the canonical and microcanonical ensembles are non-equivalent. In studying the relaxation time of non-equilibrium states it is found that as in the HMF model, a class of non-magnetic states is quasi-stationary, with an algebraic divergence of their lifetime with the number of degrees of freedom N. The lifetime of metastable states is found to increase exponentially with N as expected.  相似文献   

4.
We formulate the statistical mechanics of chaotic system with few degrees of freedom and investigated the quartic oscillator system using microcanonical and canonical ensembles. Results of statistical mechanics are numerically verified by considering the dynamical evolution of quartic oscillator system with two degrees of freedom.   相似文献   

5.
The ability to characterise and control matter far away from equilibrium is a frontier challenge facing modern science. In this article, we sketch out a heuristic structure for thinking about the different ways in which non-equilibrium phenomena can impact molecular reaction dynamics. Our analytical schema includes three different regimes, organised according to increasing dynamical resolution: at the lowest resolution, we have conformer phase space, at an intermediate resolution, we have energy space; and at the highest resolution, we have mode space. Within each regime, we discuss practical definitions of non-equilibrium phenomena, mostly in terms of the corresponding relaxation timescales. Using this analytical framework, we discuss some recent non-equilibrium reaction dynamics studies spanning isolated small-molecule ensembles, gas-phase ensembles and solution-phase ensembles. This includes new results that provide insight into how non-equilibrium phenomena impact the solution-phase alkene–hydroboration reaction. We emphasise that interesting non-equilibrium dynamical phenomena often occur when the relaxation timescales characterising each regime are similar. In closing, we reflect on outstanding challenges and future research directions to guide our understanding of how non-equilibrium phenomena impact reaction dynamics.  相似文献   

6.
Finite thermostats are studied in the context of nonequilibrium statistical mechanics. Entropy production rate has been identified with the mechanical quantity expressed by the phase space contraction rate and the currents have been linked to its derivatives with respect to the parameters measuring the forcing intensities. In some instances Green–Kubo formulae, hence Onsager reciprocity, have been related to the fluctuation theorem. However, mainly when dissipation takes place at the boundary (as in gases or liquids in contact with thermostats), phase space contraction may be independent on some of the forcing parameters or, even in absence of forcing, phase space contraction may not vanish: then the relation with the fluctuation theorem does not seem to apply. On the other hand phase space contraction can be altered by changing the metric on phase space: here this ambiguity is discussed and employed to show that the relation between the fluctuation theorem and Green–Kubo formulae can be extended and is, by far, more general.  相似文献   

7.
The question of how reversible microscopic equations of motion can lead to irreversible macroscopic behaviour has been one of the central issues in statistical mechanics for more than a century. The basic issues were known to Gibbs. Boltzmann conducted a very public debate with Loschmidt and others without a satisfactory resolution. In recent decades there has been no real change in the situation. In 1993 we discovered a relation, subsequently known as the Fluctuation Theorem (FT), which gives an analytical expression for the probability of observing Second Law violating dynamical fluctuations in thermostatted dissipative non-equilibrium systems. The relation was derived heuristically and applied to the special case of dissipative non-equilibrium systems subject to constant energy 'thermostatting'. These restrictions meant that the full importance of the Theorem was not immediately apparent. Within a few years, derivations of the Theorem were improved but it has only been in the last few of years that the generality of the Theorem has been appreciated. We now know that the Second Law of Thermodynamics can be derived assuming ergodicity at equilibrium, and causality. We take the assumption of causality to be axiomatic. It is causality which ultimately is responsible for breaking time reversal symmetry and which leads to the possibility of irreversible macroscopic behaviour. The Fluctuation Theorem does much more than merely prove that in large systems observed for long periods of time, the Second Law is overwhelmingly likely to be valid. The Fluctuation Theorem quantifies the probability of observing Second Law violations in small systems observed for a short time. Unlike the Boltzmann equation, the FT is completely consistent with Loschmidt's observation that for time reversible dynamics, every dynamical phase space trajectory and its conjugate time reversed 'anti-trajectory', are both solutions of the underlying equations of motion. Indeed the standard proofs of the FT explicitly consider conjugate pairs of phase space trajectories. Quantitative predictions made by the Fluctuation Theorem regarding the probability of Second Law violations have been confirmed experimentally, both using molecular dynamics computer simulation and very recently in laboratory experiments.  相似文献   

8.
《Nuclear Physics B》1996,482(3):536-566
We construct a field theory to describe energy averaged quantum statistical properties of systems which are chaotic in their classical limit. An expression for the generating function of general statistical correlators is presented in the form of a functional supermatrix non-linear σ-model where the effective action involves the evolution operator of the classical dynamics. Low-lying degrees of freedom of the field theory are shown to reflect the irreversible classical dynamics describing relaxation of phase space distributions. The validity of this approach is investigated over a wide range of energy scales. As well as recovering the universal long-time behavior characteristic of random matrix ensembles, this approach accounts correctly for the short-time limit yielding results which agree with the diagonal approximation of periodic orbit theory.  相似文献   

9.
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.  相似文献   

10.
We explore the high-dimensional chaotic dynamics of the Lorenz-96 model by computing the variation of the fractal dimension with system parameters. The Lorenz-96 model is a continuous in time and discrete in space model first proposed by Lorenz to study fundamental issues regarding the forecasting of spatially extended chaotic systems such as the atmosphere. First, we explore the spatiotemporal chaos limit by increasing the system size while holding the magnitude of the external forcing constant. Second, we explore the strong driving limit by increasing the external forcing while holding the system size fixed. As the system size is increased for small values of the forcing we find dynamical states that alternate between periodic and chaotic dynamics. The windows of chaos are extensive, on average, with relative deviations from extensivity on the order of 20%. For intermediate values of the forcing we find chaotic dynamics for all system sizes past a critical value. The fractal dimension exhibits a maximum deviation from extensivity on the order of 5% for small changes in system size and the deviation from extensivity decreases nonmonotonically with increasing system size. The length scale describing the deviations from extensivity is consistent with the natural chaotic length scale in support of the suggestion that deviations from extensivity are due to the addition of chaotic degrees of freedom as the system size is increased. We find that each wavelength of the deviation from extensive chaos contains on the order of two chaotic degrees of freedom. As the forcing is increased, at constant system size, the dimension density grows monotonically and saturates at a value less than unity. We use this to quantify the decreasing size of chaotic degrees of freedom with increased forcing which we compare with spatial features of the patterns.  相似文献   

11.
12.
We apply standard projection operator techniques known from nonequilibrium statistical mechanics to eliminate fast chaotic degrees of freedom in a low-dimensional dynamical system. Through the usual perturbative approach we end up in second order with a stochastic system where the fast chaotic degrees of freedom are modelled by Gaussian white noise. The accuracy of the perturbation expansion is analysed in detail by the discussion of an exactly solvable model.  相似文献   

13.
14.
We prepare metastable glassy states in a model glass former made of Lennard-Jones particles by sampling biased ensembles of trajectories with low dynamical activity. These trajectories form an inactive dynamical phase whose "fast" vibrational degrees of freedom are maintained at thermal equilibrium by contact with a heat bath, while the "slow" structural degrees of freedom are located in deep valleys of the energy landscape. We examine the relaxation to equilibrium and the vibrational properties of these metastable states. The glassy states we prepare by our trajectory sampling method are very stable to thermal fluctuations and also more mechanically rigid than low-temperature equilibrated configurations.  相似文献   

15.
Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to
non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the
Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic
equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.  相似文献   

16.
A general non-equilibrium formulation of quantum statistical mechanics allows for statistical as well as for dynamical features of a system. From our two-step dynamical model formulated in this frame we then discuss the diffractive production of a leading particle and secondaries deriving from the “evaporation” of a simultaneously produced fireball.  相似文献   

17.
A Lagrangian generalization of time-reversible Born-Oppenheimer molecular dynamics Niklasson et al. [Phys. Rev. Lett. 97, 123001 (2006)10.1103/PhysRevLett.97.123001] is proposed. The formulation enables the application of higher-order symplectic or geometric integration schemes that are stable and energy conserving even under incomplete self-consistency convergence. It is demonstrated how the accuracy is improved by over an order of magnitude compared to previous formulations at the same level of computational cost. The proposed Lagrangian includes extended electronic degrees of freedom as auxiliary dynamical variables in addition to the nuclear coordinates and momenta. While the nuclear degrees of freedom propagate on the Born-Oppenheimer potential energy surface, the extended auxiliary electronic degrees of freedom evolve as a harmonic oscillator centered around the adiabatic propagation of the self-consistent ground state.  相似文献   

18.
The ensemble approach to understand genetic regulatory networks   总被引:3,自引:0,他引:3  
Stuart Kauffman 《Physica A》2004,340(4):733-740
Understanding the genetic regulatory network comprising genes, RNA, proteins and the network connections and dynamical control rules among them, is a major task of contemporary systems biology. I focus here on the use of the ensemble approach to find one or more well-defined ensembles of model networks whose statistical features match those of real cells and organisms. Such ensembles should help to explain and predict features of real cells and organisms.  相似文献   

19.
通过对纤维悬浮聚合物熔体的可逆和不可逆热力学过程的耦合,建立了分子链弹性哑铃模型与悬浮纤维取向描述相耦合的、具有均一 (GENERIC) 结构形式的熔体多尺度模型. 由该均一结构的多尺度模型不仅可以得出熔体不同尺度上的应力贡献,还可为一般多尺度模型方程组的建立提供其结构形式均一化的方法. 关键词: GENERIC结构 纤维取向 黏弹性 聚合物  相似文献   

20.
We discuss, using computer simulation, the microscopic definition of entropy production rate in a model of a dissipative system: a sheared fluid in which the kinetic energy is kept constant via a Gaussian thermostat. The total phase space contraction rate is the sum of two statistically independent contributions: the first one is due to the work of the conservative forces, is independent of the driving force and does not vanish at zero drive, making the system nonconservative also in equilibrium. The second is due to the work of the dissipative forces, and is responsible for the average entropy production; the distribution of its fluctuations is found to verify the Fluctuation Relation of Gallavotti and Cohen. The distribution of the fluctuations of the total phase space contraction rate also verify the Fluctuation Relation. It is compared with the same quantity calculated in the isoenergetic ensemble: we find that the two ensembles are equivalent, as conjectured by many authors. Finally, we discuss the implication of our results for experiments trying to verify the validity of the FR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号