首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The synthesis and isolation of the complex cis,fac-[RuIICl2(bpea)(PPh3)][3; bpea = N,N-bis(2-pyridylmethyl)ethylamine] and three geometrical isomers of the complex [RuIICl(bpea)(dppe)](BF4) [4; dppe = (1,2-diphenylphosphino)ethane], trans,fac (4a), cis,fac (4b), and mer(down) (4c), have been described (see Chart 1 for a drawing of their structures). These complexes have been characterized through analytical, spectroscopic (IR, UV/vis, and 1D and 2D NMR), and electrochemical (cyclic voltammetry) techniques. In addition, complexes 3, 4a, and 4b have been further characterized in the solid state through monocrystal X-ray diffraction analysis. The molecular and electronic structures of isomers 4a, 4b, 4c, and 4d (the mer(up) isomer) have also been studied by means of density functional theory (DFT) calculations. Furthermore, their low-energy electronic transitions have been simulated using time-dependent DFT approaches, which have allowed unraveling of their metal-to-ligand charge-transfer nature. Complexes 3 and 4a-c are capable of catalyzing H-transfer types of reactions between alcohols and aromatic ketones such as acetophenone and 2,2-dimethylpropiophenone (DP). A strong influence of the facial versus meridional geometry in the bpea ligand coordination mode is observed for these catalytic reactions, with the meridional isomer being much more active than the facial one. The meridional isomer is even capable of carrying out the H-transfer reaction of bulky substrates such as DP at room temperature.  相似文献   

2.
A new set of Ru-Cl complexes containing either the pinene[5,6]bpea ligand (L1) or the C3 symmetric pinene[4,5]tpmOMe (L2) tridentate ligand in combination with the bidentate (B) 2,2'-bipyridine (bpy) or 1,2-diphenylphosphinoethane (dppe) with general formula [RuCl(L1 or L2)(B)](+) have been prepared and thoroughly characterized. In the solid state, X-ray diffraction analysis techniques have been used. In solution, cyclic voltammetry (CV) and 1D and 2D NMR spectroscopy have been employed. DFT calculations have been also performed on these complexes and their achiral analogues previously reported in our group, to interpret and complement experimental results. Whereas isomerically pure complexes ([Ru(II)Cl(L2)(bpy)](BF4), 5 and [Ru(II)Cl(L2)(dppe)](BF4), 6) are obtained when starting from the highly symmetric [Ru(III)Cl3(L2)], 2, isomeric mixtures of cis, fac-[Ru(II)Cl(L1)(bpy)](BF4) (3b/3b'), trans,fac- (3a) and up/down,mer- (3c, 3d) isomers are formed when bpy is added to the less symmetric [Ru(III)Cl3(L1)], 1, in contrast to the case of the bulky dppe ligand that, upon coordination to 1, leads to the trans,fac-[Ru(II)Cl(L1)(dppe)](BF4) (4a) complex as a sole isomer due to steric factors.  相似文献   

3.
We have prepared a new family of ruthenium complexes containing the bpea ligand (where bpea stands for N,N-bis(2-pyridyl)ethylamine), with general formula [Ru(bpea)(bpy)(X)](n+) (2, X = Cl(-); 3, X = H(2)O; 4, X = OH(-)), and the trisaqua complex [Ru(bpea)(H2O)(3)](2+), 6. The complexes have been characterized through elemental analyses, UV-vis and (1)H NMR spectroscopy, and electrochemical studies. For complex 3, the X-ray diffraction structure has also been solved. The compound belongs to the monoclinic P2(1)/m space group, with Z = 2, a = 7.9298(6) A, b = 18.0226(19) A, c = 10.6911(8) A, and beta = 107.549(8) degrees. The Ru metal center has a distorted octahedral geometry, with the O atom of the aquo ligand placed in a trans position with regard to the aliphatic N atom of the bpea ligand so that the molecule possesses a symmetry plane. NMR spectra show that the complex maintains its structure in aqueous solution, and that the corresponding chloro complex also has a similar structural arrangement. The pH dependence of the redox potential for the complex [Ru(bpea)(bpy)(H2O)](PF(6))(2) is reported, as well as the ability of the corresponding oxo complex to catalyze the oxidation of benzylic alcohol to benzaldehyde in both chemical and electrochemical manners.  相似文献   

4.
Two novel paullone derivatives, namely, 6-(alpha-picolylamino)-7,12-dihydroindolo[3,2-d][1]benzazepine (L1) and 9-bromo-6-(alpha-picolylamino)-7,12-dihydroindolo[3,2-d][1]benzazepine (L2), have been prepared. The reaction of cis-[RuCl2(DMSO)4] (DMSO=dimethyl sulfoxide) with L1 and L2 in a 1:1 molar ratio in dry ethanol at 50 degrees C afforded the complexes trans-[RuIICl2(DMSO)2L1] (1a) and trans-[RuIICl2(DMSO)2L2] (1b) in 26 and 30% yield, respectively. The reaction carried out from the same starting compounds in a 1:2 molar ratio at 75 degrees C led to the formation of [RuIICl(DMSO)(L1)2]Cl (2a) and [RuIICl(DMSO)(L2)2]Cl (2b) in 16 and 23% yield, correspondingly. The products were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, electrospray ionization mass spectrometry, IR spectroscopy, electronic spectra, cyclic voltammetry, and X-ray crystallography (L1, L2, 1a, and 2b). Complexes 2a and 2b exhibit remarkable antiproliferative activity in three human carcinoma cell lines, A549 (non-small cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma). The novel complexes show an intercalative mode of interaction with DNA, which may render them attractive alternatives to metal compounds with a coordinative mode of interaction.  相似文献   

5.
The oxidative addition of the salt [{SC(NMe(2))(2)}(2)]Cl(2).2H(2)O (1), the disulfide-like dimerized form of 1,1,3,3-tetramethylthiourea (tmtu), to Pt(II) chloro am(m)ine compounds is described. Oxidation of the [PtCl(3)(NH(3))](-) anion with 1 in methanol yields cis-[PtCl(4)(NH(3))L] (2; L = tmtu) as the result of the trans addition of one tmtu and one chloro ligand. The same mode of oxidation is found in reactions of 1 with [PtCl(dien)](+) (dien = diethylenetriamine) and trans-[PtCl(2)(NH(3))(2)]. In these cases, however, the oxidation is followed by (light-independent) cis,trans isomerizations, giving trans,mer-[PtCl(2)(dien)L]Cl(2) (4) and fac-[PtCl(3)(NH(3))(2)L]Cl.0.5MeOH (6), respectively. The single-crystal X-ray structures of 2 and trans,mer-[PtCl(2)(dien)L](BF(4))(2) (4a) have been determined. 2: monoclinic, space group P2(1)/n, a = 6.280(1) ?, b = 13.221(3) ?, c = 16.575(2) ?, beta = 96.45(1) degrees, Z = 4. 4a: monoclinic, space group C2/m, a = 21.093(5) ?, b = 8.9411(9) ?, c = 14.208(2) ?, beta = 124.65(2) degrees, Z = 4. The tmtu ligands are S-bound. In 2 a pronounced trans influence of the S-donor ligand on the Pt-Cl bond (2.370(1) ?) trans to sulfur is observed. The unusual acidity of the Pt(IV) complexes exhibiting tmtu coordination trans to chloride is attributed to hydrolysis of the labilized Pt-Cl(trans) bond, which is supported by ion sensitive electrode measurements. An upfield shift of the (195)Pt resonances is found on changing the ligand combination from NCl(4)S (2) to N(3)Cl(2)S (4). This order correlates with the trans influences of the ligands: tmtu > am(m)ine > chloride. The cytotoxicity of 2 and 6 in L1210 cell lines is reported and discussed in terms of a possible mechanism of action of the compounds invivo. It is suggested that tmtu may act as a lipophilic carrier ligand and therefore enhance the cellular uptake of the new potential Pt(IV) drugs.  相似文献   

6.
The bis(2-pyridyl)ethylamine (bpea) ligand has been used as a starting material for the synthesis of dinuclear Ru complexes of general formula trans,fac-{[Ru(n)X(bpea)](2)(μ-bpp)}(m+) (for X = Cl, n = II, m = 1, trans-Ru(II)-Cl, 1(+); for X = OH, n = III, m = 3, trans-Ru(III)-OH, 2(3+)) where the 3,5-bis(2-pyridyl)pyrazolate anionic ligand (bpp) acts as bridging dinucleating ligand, the bpea ligand coordinates in a facial manner and the monodentate ligands X are situated in a trans fashion with regard to one another. These complexes have been characterized in solution by 1D and 2D NMR spectroscopy, UV-vis and electrochemical techniques and in the solid state by X-ray diffraction analysis. The reaction of 1(PF(6)) with Ag(+) generates the corresponding solvated complex where the Cl ligand has been removed as insoluble AgCl, followed by the oxidation of Ru(II) to Ru(III) to generate the corresponding dinuclear complex trans-Ru(III)-OH, 2(PF(6))(3). The latter has been shown to catalytically oxidize water to molecular dioxygen using Ce(IV) as oxidant. Quantitative gas evolution as a function of time has been monitored on line by both manometry and mass spectroscopy (MS) techniques. Relative initial velocities of oxygen formation together with structural considerations rule out an intramolecular O-O bond formation pathway.  相似文献   

7.
Reactions of the complex trans-[RuCl(4)(Hind)(2)](-) (Hind = indazole), which is of clinical relevance today, with both the DNA model nucleobase 9-methyladenine (made) and the thioethers R(2)S (R = Me, Et), as models of the methionine residue in biological molecules possibly acting as nitrogen-competing sulfur-donor ligands for ruthenium atom, have been investigated to get insight into details of mechanism leading to antitumor activity. Three novel ruthenium complexes, viz., [Ru(III)Cl(3)(Hind)(2)(made)], 1, [Ru(II)Cl(2)(Hind)(2)(Me(2)S)(2)], 2, and [Ru(II)Cl(2)(Hind)(2)(Et(2)S)(2)], 3, have been isolated as solids. Oxidation of 2 and 3 with hydrogen peroxide in the presence of 12 M HCl in chloroform afforded the monothioether adducts, viz., [Ru(III)Cl(3)(Hind)(2)(Me(2)S)], 4, and [Ru(III)Cl(3)(Hind)(2)(Et(2)S)], 5. By dissolution of 2 or 3 in DMSO, replacement of both R(2)S ligands by DMSO molecules occurred with isolation of trans,trans,trans-[Ru(II)Cl(2)(Hind)(2)(DMSO)(2)], 6. The products were characterized by elemental analysis, IR, UV-vis, electrospray mass spectrometry, cyclic voltammetry, and X-ray crystallography (1.CH(2)Cl(2).CH(3)OH and 1.1.1H(2)O.0.9CH(3)OH, 2, and 5). The first crystallographic evidence for the monofunctional coordination of the 9-methyladenine ligand to ruthenium via N7 and the self-pairing of the complex molecules via H-bonding, using the usual Watson-Crick pairing donor and acceptor sites of two adjacent 9-methyladenine ligands, is reported. The electrochemical behavior of 1-5 has been studied in DMF and DMSO by cyclic voltammetry. The redox potential values have been interpreted on the basis of the Lever's parametrization method. The E(L) parameter was estimated for 9-methyladenine at 0.18 V, showing that this ligand behaves as a weaker net electron donor than imidazole (E(L) = 0.12 V). The kinetics of the reductively induced stepwise replacement of chlorides by DMF in 4 and 5 were studied by digital simulation of the cyclic voltammograms. The rate constant k(1) has been determined as 0.9 +/- 0.1 s(-)(1), which obeys the first-order rate law, while k(2) is concentration dependent (0.2 +/- 0.1 M(1)(-)(n)().s(-)(1) with n > 1 for 4 mM solutions of 4 and 5), indicating higher-order reactions mechanism.  相似文献   

8.
9.
The diphosphinoketenimine ligand in the neutral complexes fac-[MnI(CO)(3){(PPh(2))(2)C=C=NR}] (1 a: R = Ph; 1 b: R = p-tolyl) undergoes nucleophilic attack by MeLi and nBuMgCl yielding, after hydrolysis, the diphosphinoenamine-containing complexes fac-[MnI(CO)(3){(PPh(2))(2)C=C(R')NHR}] (3 a,b: R' = Me; 4 a,b: R' = nBu). Complex 1 a reacts under the same conditions with H(2)C=C=CHMgBr to afford fac-[MnI(CO)(3){(PPh(2))(2)C=C(CH(2)CC[triple chemical bond]CH)NHR}] (5 a), which contains a terminal alkyne group on the alpha-carbon atom of the diphosphinoenamine ligand. The cationic complexes fac-[Mn(CO)(4){(PPh(2))(2)C=C=NR}](+) (6) react with H(2)C=C=CHMgBr to afford diphosphinomethanide derivatives bearing three different types of functional groups, depending upon the substituent on the nitrogen atom of the ketenimine: cumulene in fac-[Mn(CO)(4){(PPh(2))(2)C--C(CH=C=CH(2))=N-xylyl}] (7 d), internal alkyne in fac-[Mn(CO)(4){(PPh(2))(2)C--C(C[triple chemical bond]CCH(3))=NtBu}] (8), and quinoline in 9 (R = Ph), whose formation implies an unusual cyclization process. Protonation of 7 d, 8, and 9 with HBF(4) occurs at the nitrogen atom to give the cationic derivatives 10 d, 11, and 12, respectively, which contain the corresponding functionalized diphosphine ligands. Irradiation of 3 a,b and 4 a,b with Vis/UV light makes it possible to isolate the free ligands (PPh(2))(2)C=C(R')NHR (13 a,b and 14 a,b), completing the metal-assisted synthesis of these novel functionalized diphosphines. Irradiation of 12 with Vis/UV light generates free phosphinoquinoline ligand 15, which readily affords a complex 16 containing 15 as a P,N-chelating ligand when treated with [PdCl(2)(NCMe)(2)], thus demonstrating its coordination capability.  相似文献   

10.
The first Re(I)-dipyrrinato complexes are reported. Complexes with the general formulas fac-[ReL(CO)(3)Cl](-), fac-[ReL(CO)(3)PR(3)], and [ReL(CO)(2)(PR(3))(PR'(3))] have been prepared, where L is one of a series of meso-aryl dipyrrinato ligands. Access to these complexes proceeds via the reaction of [Re(CO)(5)Cl] with the dipyrrin (LH) to produce fac-[ReL(CO)(3)Cl](-). A subsequent reaction with PR(3) (R = phenyl, butyl) leads to displacement of the chloride ligand to generate fac-[ReL(CO)(3)PR(3)], and further reaction with PR'(3) leads to the displacement of the CO ligand trans to the first PR(3) ligand to give trans(P), cis(C)-[ReL(CO)(2)(PR(3))(PR'(3))]. The structures of the complexes were determined in the solid state by X-ray crystallography and in solution by (1)H NMR spectroscopy. Electronic absorption spectroscopy reveals a prominent band in the visible region at relatively low energy (472-491 nm) for all complexes, which is assigned as a π-π* transition of the dipyrrin chromophore. Weak emission (λ(ex) = 485 nm, quantum yields <0.01) was observed for [ReL(CO)(3)Cl](-) and [ReL(CO)(3)PR(3)] complexes, but no emission was generally evident from the [ReL(CO)(2)(PR(3))(PR'(3))] complexes. On the basis of the large Stokes shift (~6000 cm(-1)), the emission is ascribed to phosphorescence from a triplet excited state. The emission intensity is sensitive to dissolved oxygen and methyl viologen; a Stern-Volmer plot in the latter case gave a straight line. Photochemical ligand substitution reactions of [ReL(CO)(3)PR(3)] were induced by excitation with a 355 nm laser in acetonitrile. [ReL(CO)(2)(PR(3))(CH(3)CN)] is formed as a putative intermediate, which reacts thermally with added PR'(3) to produce [ReL(CO)(2)(PR(3))(PR'(3))] complexes.  相似文献   

11.
The novel polydentate ligand 1,4-bis(di(N-methylimidazol-2-yl)methyl)phthalazine, bimptz, has been synthesized and its coordination chemistry was investigated. Bimptz is neutral and contains a central phthalazine unit, to which two di-(N-methylimidazol-2-yl)methyl groups are attached in the 1,4-positions. This ligand therefore provides up to 6 donor sites for coordination to metal ions. A series of metal complexes of bimptz was prepared and their molecular structures were determined by X-ray diffraction. Upon reaction of bimptz with two equivalents of MnCl(2)·4H(2)O, CoCl(2)·6H(2)O and [Ru(dmso)(4)Cl(2)], the dinuclear complexes [Mn(2)(bimptz)(μ-Cl)(2)Cl(2)] (1), [Co(2)(bimptz)(CH(3)OH)(2)(μ-Cl)(2)](PF(6))(2) (3) and [Ru(2)(bimptz)(dmso)(2)(μ-Cl)(2)](PF(6))(2) (4), respectively, were isolated. The latter were found to have similar solid state structures with octahedrally coordinated metal centers bridged by the phthalazine unit and two chloro ligands. The cobalt and ruthenium complexes 3 and 4 were isolated as PF(6)(-) salts and contain neutral methanol and dmso ligands, respectively, at the terminal coordination sites of the metal centres. The mononuclear ruthenium complex [Ru(Hbimptz)(2)](PF(6))(4) (6) was obtained from the reaction of two equivalents bimptz with [Ru(dmso)(4)Cl(2)]. In complex 6, three donor sites per ligand molecule are used for coordination of the Ru(ii) center. In each bimptz ligand, one of the remaining, dangling N-methylimidazole rings is protonated and forms a hydrogen bond with the unprotonated N-methylimidazole ring of the other bimptz ligand.  相似文献   

12.
The reactions of cis-[MoCl(η(3)-methallyl)(CO)(2)(NCMe)(2)] (methallyl = CH(2)C(CH(3))CH(2)) with Na(NCNCN) and pz*H (pzH, pyrazole, or dmpzH, 3,5-dimethylpyrazole) lead to cis-[Mo(η(3)-methallyl)(CO)(2)(pz*H)(μ-NCNCN-κ(2)N,N)](2) (pzH, 1a; dmpzH, 1b), where dicyanamide is coordinated as bridging ligand. Similar reactions with fac-[MnBr(CO)(3)(NCMe)(2)] lead to the pyrazolylamidino complexes fac-[Mn(pz*H)(CO)(3)(NH═C(pz*)NCN-κ(2)N,N)] (pzH, 2a; dmpzH, 2b), resulting from the coupling of pyrazol with one of the CN bonds of dicyanamide. The second CN bond of dicyanamide in 2a undergoes a second coupling with pyrazole after addition of 1 equiv of fac-[MnBr(CO)(3)(pzH)(2)], yielding the dinuclear doubly coupled complex [{fac-Mn(pzH)(CO)(3)}(2)(μ-NH═C(pz)NC(pz)=NH-κ(4)N,N,N,N)]Br (3). The crystal structure of 3 reveals the presence of two isomers, cis or trans, depending on whether the terminal pyrazoles are coordinated at the same or at different sides of the approximate plane defined by the bridging bis-amidine ligand. Only the cis isomer is detected in the crystal structure of the perchlorate salt of the same bimetallic cation (4), obtained by metathesis with AgClO(4). All the N-bound hydrogen atoms of the cations in 3 or 4 are involved in hydrogen bonds. Some of the C-N bonds of the pyrazolylamidino ligand have a character intermediate between single and double, and theoretical studies were carried out on 2a and 3 to confirm its electronic origin and discard packing effects. Calculations also show the essential role of bromide in the planarity of the tetradentate ligand in the bimetallic complex 3.  相似文献   

13.
14.
Two isomeric Ru(II) complexes containing the dinucleating Hbpp (3,5-bis(2-pyridyl)pyrazole) ligand together with Cl and dmso ligands have been prepared and their structural, spectroscopic, electrochemical, photochemical, and catalytic properties studied. The crystal structures of trans,cis-[Ru(II)Cl(2)(Hbpp)(dmso)(2)], 2a, and cis(out),cis-[Ru(II)Cl(2)(Hbpp)(dmso)(2)], 2b, have been solved by means of single-crystal X-ray diffraction analysis showing a distorted octahedral geometry for the metal center where the dmso ligands coordinate through their S atom. 1D and 2D NMR spectroscopy corroborates a similar structure in solution for both isomers. Exposure of either 2a or 2b in acetonitrile solution under UV light produces a substitution of one dmso ligand by a solvent molecule generating the same product namely, cis(out)-[Ru(II)Cl(2)(Hbpp)(MeCN)(dmso)], 4. While the 1 e(-) oxidation of 2b or cis(out),cis-[Ru(II)Cl(2)(bpp)(dmso)(2)](+), 3b, generates a stable product, the same process for 2a or trans,cis-[Ru(II)Cl(2)(bpp)(dmso)(2)](+), 3a, produces the interesting linkage isomerization phenomenon where the dmso ligand switches its bond from Ru-S to Ru-O (K(III)(O)(-->)(S) = 0.25 +/- 0.025, k(III)(O)(-->)(S) = 0.017 s(-1), and k(III)(S)(-->)(O) = 0.065 s(-1); K(II)(O)(-->)(S) = 6.45 x 10(9), k(II)(O)(-->)(S) = 0.132 s(-1), k(II)(S)(-->)(O) = 2.1 x 10(-11) s(-1)). Finally complex 3a presents a relatively high activity as hydrogen transfer catalyst, with regard to its ability to transform acetophenone into 2-phenylethyl alcohol using 2-propanol as the source of hydrogen atoms.  相似文献   

15.
NH-Bridged tetradentate ligands were synthesized to achieve stable trans Ru(II) bis(polypyridyl) complexes. The polypyridyl part of the ligand was either symmetric, as in N,N-bis(1,10-phenanthroline-2-yl)amine (phen-NH-phen), or asymmetric, as in N-(1,10-phenanthroline-2-yl)-N-(6-yl-dipyridyl[2,3-a:2',3'-c]phenazine)amine (dppz-NH-phen). Protonation of phen-NH-phen with trifluoroacetic acid and the subsequent reaction with RuCl3 yield trans-[Ru(phen-NH-phen)Cl2]. The chloro ligands in this compound can easily be replaced by stronger ligands, such as CH3CN and DMSO. In this way, complexes trans-[Ru(phen-NH-phen)(CH3CN)(DMSO)](PF6)2 (1), trans-[Ru(phen-NH-phen)(DMSO)2](PF6)2 (2), and trans-[Ru(phen-NH-phen)(CH3CN)2](PF6)2 (3) were obtained. X-ray structures were determined for 1 and 3. Following a procedure similar to that used with phen-NH-phen, the complex trans-[Ru(dppz-NH-phen)(CH3CN)2](PF6)2 (4) was obtained. To our knowledge, this is the first reported trans ruthenium(II) bis(polypyridyl) complex with two different polypyridyl ligands in the equatorial plane.  相似文献   

16.
Pyridine-2-carboxylic acid, pyridine-2,3-dicarboxylic acid, and pyridine-2,4-dicarboxylic acid or their [(Ph(3)P)(2)N](+) salts react with the triply bonded dirhenium(II) complex Re(2)Cl(4)(mu-dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) in refluxing ethanol to afford unsymmetrical substitution products of the type Re(2)(eta(2)-N,O)Cl(3)(mu-dppm)(2), where N,O represents a chelating pyridine-2-carboxylate ligand (N,O = O(2)C-2-C(5)H(4)N (1), O(2)C-2-C(5)H(3)N(-3-CO(2)Et) (3), or O(2)C-2-C(5)H(3)N(-4-CO(2)H) (4)). The carboxylate groups in the 3- and 4- positions are not bound to the metal centers; in the case of 3 this group undergoes esterification in the refluxing ethanol solvent. Structure determinations have shown that 1, 3, and 4 possess similar structures in which there is an axial Re-O (carboxylate) bond (collinear with the Re(triple bond)Re bond) and the mu-dppm ligands are bound in a trans,cis fashion to the two Re atoms which have the ligand atom arrangement [P(2)NOClReReCl(2)P(2)]. The tridentate dianionic pyridine-2,6-dicarboxylate ligand (dipic) reacts with Re(2)Cl(4)(mu-dppm)(2) in ethanol at room temperature to give a compound Re(2)(dipic)Cl(2)(mu-dppm)(2) (6) in which the dipic ligand is bound in a symmetrical eta(3)-(O,N,O) fashion to one Re atom, with the N atom in an axial position (collinear with the Re(triple bond)Re bond) and with preservation of the same trans,trans coordination of the mu-dppm ligands that is present in Re(2)Cl(4)(mu-dppm)(2). Under reflux conditions, this kinetic product isomerizes to the thermodynamically favored isomer 5 with an unsymmetrical structure in which the dipic ligand chelates to one Re atom (as in 1, 3, and 4) and uses its other carboxylate group to bridge to the second Re atom. The isomerization of 6 to 5, which also results in a change in the coordination of the pair of mu-dppm ligand to trans,cis, is believed to occur by a partial "merry-go-round" process, a mechanism that probably explains the structures of the thermodynamic products 1, 3, and 4. The reaction of Re(2)Cl(4)(mu-dppm)(2) with pyridine-3-carboxylate gives the trans isomer of Re(2)(mu:eta(2)-O(2)C-3-C(5)H(4)N)(2)Cl(2)(mu-dppm)(2) (2) in which a pair of carboxylate bridges are present and the pyridine N atom is not coordinated. Single-crystal X-ray structural details are reported for 1-6.  相似文献   

17.
The first crystallographically characterized molybdenum(vi) selenoether complex [Mo(2)O(4)(OC(3)H(6)SeC(3)H(6)O)(2)] and its thioether analogue [Mo(2)O(4)(OC(3)H(6)SC(3)H(6)O)(2)] were synthesised. Their structural, electrochemical and oxygen atom transfer properties are compared. This is relevant for the molybdenum cofactors of the DMSO reductase family where the coordination of the active site metal occurs through O (serine/aspartate), S (cysteine) or Se (selenocysteine). Both structures are almost identical except for those parameters that are directly derived from the different sizes of the varied ligand atoms (Se and S). No trans influence was observed. The metal centered redox process (Mo(V)<-->Mo(VI)) is at slightly lower voltage for the sulfur than for the selenium complex. The selenium compound catalyses the oxygen atom transfer from DMSO to PPh(3) by a different mechanism and at a higher rate than the sulfur compound, which is an indication that cysteine and selenocysteine might be used for a purpose in the different molybdenum and tungsten cofactors.  相似文献   

18.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

19.
The reactions of PbPh(2)Cl(2) in methanol with acetophenone, salicylaldehyde, pyridine-2-carbaldehyde, 2-acetylpyridine, and 2-benzoylpyridine thiosemicarbazones (HATSC, HSTSC, HPyTSC, HAcPyTSC, and HBPyTSC, respectively) were explored. Despite the similarities among these ligands, the reactions afforded solids with very diverse compositions and structural characteristics, which were in most cases analyzed by X-ray diffractometry (as was the structure of the free ligand HBPyTSC). In the complexes [PbPh(2)Cl(2)(HATSC)](2), [PbPh(2)Cl(2)(HSTSC)(2)], [(PbPh(2)Cl(HPyTSC)(2))][PbPh(2)Cl(3)(MeOH)](2), and [PbPh(2)Cl(PyTSC)] the metal atoms are surrounded by more or less distorted octahedral coordination polyhedra; if both strong and weak interactions are considered, the lead atom in [PbPh(2)Cl(AcPyTSC)] has coordination number 7 and distorted pentagonal bipyramidal coordination geometry, while [(PbPh(2)(BPyTSC))(2)(PbPh(2)Cl(4))].2MeOH contains two different types of lead atom, one with octahedral and the other with pentagonal bipyramidal coordination. The complexes (H(2)AcPyTSC)[PbPh(2)Cl(3)] and [PbPh(2)Cl(HAcPyTSC)][PbPh(2)Cl(3)], which were also isolated, could not be crystallized. All these complexes are soluble in DMSO, and the compositions of these solutions were investigated using conductivity measurements and (1)H and (207)Pb NMR spectroscopy.  相似文献   

20.
Treatment of fac-[Mn(CNR)(CO)3{(PMe2)2CH2}]ClO4 (1a R = Ph, R = tBu) with KOH produced the cleavage of one of the P-C bonds of the coordinated dmpm ligand, resulting in the formation of phosphine-phosphinite complexes fac-[Mn(PMe2O)(CNR)(CO)3(PMe3)] (2a,b). Alkoxides such as NaOMe and NaOEt promoted similar processes in 1a,b, yielding fac-[Mn(CNR)(CO)3(PMe3)(PMe2OR')]ClO4 (3a R = tBu, R' = Me; 3b R = Ph, R' = Me; 4a R = tBu, R' = Et; 4b R = Ph, R' = Et) derivatives. The phosphinite ligand in 2a, b can be sequentially protonated by addition of 0.5 and 1 equivalent of HBF4 leading to fac-[{Mn(CNR)(CO)3(PMe3)(PMe2O)}2H]BF4 (6a,b) and fac-[Mn(CNR)(CO)3(PMe3)(PMe2OH)]BF4 (5a,b), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号