首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The direct growth of a tetrapod-like ZnO nanostructure has been accomplished by using a thermal oxidation method without any catalysts. Studies on the field emission properties of the ordered ZnO nanotetrapods films found that the shape of the ZnO nanotetrapods has considerable effect on their field emission properties, especially the turn-on field and the emission current density. Compared with the rod-like legs ZnO nanotetrapods, the nanotetrapods with acicular legs have a lower turn-on field of 2.7 V/μm at a current density of 10 μA/cm2, a high field enhancement factor of 1830, and an available stability. More importantly, the emission current density reached 1 mA/cm2 at a field of 4.8 V/μm without showing saturation. The results could be valuable for using the ZnO nanostructure as a cold-cathode field-emission material.   相似文献   

2.
Field emission in diamond and graphite-like polycrystalline films is investigated experimentally. It is shown that the emission efficiency increases as the nondiamond carbon phase increases; for graphite-like films the threshold electric field is less than 1.5 V/μm, and at 4 V/μm the emission current reaches 1 mA/cm2, while the density of emission centers exceeds 106 cm−2. A general mechanism explaining the phenomenon of electron field emission from materials containing graphite-like carbon is proposed. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 1, 56–60 (10 July 1998)  相似文献   

3.
Field emission studies of WO2.72 nanowires synthesized by a solvothermal method have been performed in the planar diode configuration under ultra high vacuum conditions. Fowler–Nordheim plots obtained from the current-voltage characteristics follow the quantum mechanical tunneling process and a current density of ∼8.3×106 μA/cm2 can be drawn at an applied electric field of 2 V/μm. The field enhancement factor is 33025, while the turn-on field is only 1.4 V/μm. The emission current-time plot recorded at the pre-set value of emission current of 1 μA over a period of more than 3 h exhibits an initial increase and a subsequent stabilization of the emission current. The results reveal that the WO2.72 nanowire emitters synthesized by the solvothermal method are promising cathode materials for practical applications.  相似文献   

4.
Nanotip arrays of amorphous carbon with embedded hexagonal diamond nanoparticles were prepared at room temperature for use as excellent field emitters by a unique combination of anodic aluminum oxide (AAO) template and filtered cathodic arc plasma (FCAP) technology. In order to avoid nanopore array formation on the AAO surface, an effective multi-step treatment employing anodization and pore-widening processes alternately was adopted. The nanotips were about 100 nm in width at the bottom and 150 nm in height with density up to 1010 cm−2. Transmission electron microscopy investigation indicates that many nanoparticles with diameters of about 10 nm were embedded in the amorphous carbon matrix, which was proved to be hexagonal diamond phase by Raman spectrum and selected-area electron diffraction. There is no previous literature report on the field emission properties of hexagonal diamond and its preparation at room temperature under high-vacuum condition. The nanotip arrays with hexagonal diamond phase exhibit a low turn-on field of 0.5 V/μm and a threshold field of 3.5 V/μm at 10 mA/cm2. It is believed that the existence of hexagonal diamond phase has improved the field emission properties.  相似文献   

5.
类富勒烯纳米晶CNx薄膜及其场致电子发射特性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用微波等离子体增强化学气相沉积技术制备出了CNx薄膜,并利用x射线光电子能谱、x射线衍射、扫描电子显微镜和Raman光谱等测试手段对所制备的CNx薄膜的微结构和成分进行了分析.研究了其场致电子发射特性.发现薄膜的结构和场发射特性与反应系中的甲烷、氮气及氢气的流量比有关,当甲烷、氢气及氮气流量比为8/50/50 sccm时,制备的薄膜具有弯曲层状的纳米石墨晶体结构(类富勒烯结构)和很好的场发射特性.场发射阈值电场降低至1.1V/μm.当电场为5.9V/μm时,平 关键词: 类富勒烯 x薄膜')" href="#">CNx薄膜 场致电子发射 微波等离子体增强化学气相沉积  相似文献   

6.
We have observed low-macroscopic field electron emission from wide bandgap nanocrystalline Al doped SnO2 thin films deposited on glass substrates. The emission properties have been studied for different anode-sample spacings and for different Al concentrations in the films. The turn-on field and approximate work function were calculated and we have tried to explain the emission mechanism from this. The turn-on field was found to vary in the range 5.6–7.5 V/μm for a variation of anode sample spacing from 80–120 μm. The turn-on field was also found to vary from 4.6–5.68 V/μm for a fixed anode-sample separation of 80 μm with a variation of Al concentration in the films 8.16–2.31%. The Al concentrations in the films have been measured by energy dispersive X-ray analysis. Optical transmittance measurement of the films showed a high transparency with a direct bandgap ∼3.98 eV. Due to the wide bandgap, the electron affinity of the film decreased. This, along with the nanocrystalline nature of the films, enhanced the field emission properties. PACS 81.20.Fw; 61.10.-i; 79.70.+q  相似文献   

7.
Novel lotiform ZnO nanostructures were synthesized on silicon substrate via simple thermal evaporation. The average diameter of the ZnO nanostructures is ∼1.5 μm. The lotiform-like ZnO structures were formed by nanorods arrays with the average diameter of 70 nm. The as-grown lotiform ZnO nanostructures have excellent field-emission properties such as the low turn-on field of 3.4 V/μm, and very high emission current density of 12.4 mA/cm2 at the field of 9.6 V/μm. These features make the lotiform-like ZnO nanostructures competitive candidates for field-emission-based displays. PACS 61.46.-w; 61.82.Rx; 78.67.-n; 73.63.Bd; 74.78.Na  相似文献   

8.
Patterned gallium nitride nanowires and nanodots have been grown on n-Si (100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/μm to achieve a current density of 0.01 mA/cm2 and an enhanced field emission current density as high as 0.156 mA/cm2 at an applied field of 11 V/μm. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties.  相似文献   

9.
The field emission properties of multi-walled carbon nanotubes were examined using a screen-printed thick film with a diode-type configuration in a vacuum. The effects of various concentrations of two different ceramic fillers, indium tin oxide (ITO) powder and a glass frit, on the emission current density and turn-on field were evaluated. The emission properties of both pastes were dependent on the amount of filler. Considerably enhanced emission properties were obtained with the paste containing 5–10 wt.% of either ITO or the glass frit compared with those without a filler. The paste containing the ceramic filler showed enhanced emission properties compared with that containing the 5 wt.% Ag conventionally used, which confirmed the importance of the filler. The paste containing 10 wt.% ITO represented an emission current density of 176.4 μA/cm2 at 5 V/μA, a turn-on field of 1.87 V/μA for an emission current density of 1 μA/cm2 and a field enhancement factor of 7580. The paste formulation was also found to be suitable for fine patterning using UV-lithography techniques. A long-term stability test for 110 h of a paste containing 10 wt.% ITO revealed a half-life of approximately 30000 h, which is appropriate for commercial applications.  相似文献   

10.
R.S. Li 《Applied Surface Science》2009,255(9):4754-4757
Diamond-like carbon (DLC) films were deposited on Al substrates by electrodeposition technique under various voltages. The surface morphology and compositions of synthesized films were characterized by scanning electron microscopy and Raman spectroscopy. With the increase of deposition voltage, the sp2 phase concentration decreased and the surface morphology changed dramatically. The influence of deposition voltage on the field electron emission (FEE) properties of DLC films was not monotonic due to two adverse effects of deposition voltage on the surface morphology and compositions. The DLC film deposited under 1200 V exhibited optimum FEE property, including a lowest threshold field of 13 V/μm and a largest emission current density of 904.8 μA/cm2 at 23.5 V/μm.  相似文献   

11.
Field-electron emission from polyimide-ablated films   总被引:1,自引:0,他引:1  
Polyimide-ablated film was deposited by using pulsed laser ablation of a polyimide target, and field-electron emission from the film was observed for the first time. The turn-on field of the polyimide-ablated film is 12 V/μm. The current density is 0.725 mA/cm2, and the emission sites density is on the order of 106/cm2 at the applied field of 24 V/μm. The field-electron emission measurements indicate that this kind of film could be a new cold cathode material. It is suggested that the graphite-like clusters contained in the film play an important role in the field-electron emission. Received: 2 February 2000 / Accepted: 13 March 2000 / Published online: 9 August 2000  相似文献   

12.
HfNxOy thin films were deposited on Si substrates by direct current sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). SEM indicates that the film is composed of nanoparticles. AFM indicates that there are no sharp protrusions on the surface of the film. XRD pattern shows that the films are amorphous. The field electron emission properties of the film were also characterized. The turn-on electric field is about 14 V/μm at the current density of 10 μA/cm2, and at the electric field of 24 V/μm, the current density is up to 1 mA/cm2. The field electron emission mechanism of the HfNxOy thin film is also discussed.  相似文献   

13.
Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ∼3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.  相似文献   

14.
Hexagonal GaN prismatic sub-micro rods and cone nanowires have been synthesized in a large scale by a novel and controllable space-confined growth method. The as-synthesized GaN products are highly crystalline with a wurtzite structure. The prismatic rods have lengths of 15∼20 μm and diameters of 400∼500 nm enclosed by hexagonal smooth side surfaces and a pyramidal end. And the cone nanowires have average diameters of 150∼200 nm and lengths up to several tens of μm with a cone tip. The photoluminescence (PL) studies reveal prominent band-gap UV emission properties of GaN products and narrow FWHM, indicating the excellent luminescent performance and high crystal quality. For field emission characteristic of GaN nanowires, the turn-on field is about 9.5 V/μm and the current density reaches 1.0 mA/cm2 at an electric field of 18 V/ μm. The contrast experiments indicate a novel growth control can be achieved by using a graphite tube as reaction vessel. The sealed graphite tube combined with metallic initiator is greatly responsible for large-scale and uniform preparation of GaN prismatic rods and cone nanowires. Highly symmetric GaN hexagonal micropyramids are grown on a bare Si substrate. The growth mechanism and the control function of the graphite tube are demonstrated. These low-dimensional structures not only enrich semiconducting GaN family, but also are good building blocks for optoelectronic devices. PACS 81.10.Bk; 81.07.-b; 81.05.Ea  相似文献   

15.
Ag(TCNQ) and Cu(TCNQ) nanowires were synthesized via vapor-transport reaction method at a low temperature of 100 °C. Field emission properties of the as-obtained nanowires on ITO glass substrates were studied. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires were 9.7 and 7.6 V/μm (with emission current of 10 μA/cm2), respectively. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires decreased to 6 and 2.2 V/μm, and the emission current densities increased by two orders at a field of 8 V/μm with a homogeneous-like metal (e.g. Cu for Cu(TCNQ)) buffer layer to the substrate. The improved field emission is due to the better conduct in the nanowires/substrate interface and higher internal conductance of the nanowires. The patterned field emission cathode was then fabricated by localized growing M-TCNQ nanowires onto mask-deposited metal film buffer layer. The emission luminance was measured to be 810 cd/m2 at a field of 8.5 V/μm.  相似文献   

16.
Zinc oxide nanopencil arrays were synthesized on pyramidal Si(1 0 0) substrates via a simple thermal evaporation method. Their field emission properties have been investigated: the turn-on electric field (at the current density of 10 μA/cm2) was about 3.8 V/μm, and the threshold electric field (at the current density of 1 mA/cm2) was 5.8 V/μm. Compared with similar structures grown on flat Si substrates, which were made as references, the pyramidal Si-based ZnO nanopencil arrays appeared to be superior in field emission performance, thus the importance of the non-flat substrates has been accentuated. The pyramidal Si substrates could not only suppress the field screening effect but also improve the field enhancement effect during the field emission process. These findings indicated that using non-flat substrates is an efficient strategy to improve the field emission properties.  相似文献   

17.
Field emission from single-walled carbon nanotubes (SWNTs) aligned on a patterned gold surface is reported. The SWNT emitters were prepared at room temperature by a self-assembly monolayer technique. SWNTs were cut into sub-micron lengths by sonication in an acidic solution. Cut SWNTs were attached to the gold surface by the reaction between the thiol groups and the gold surface. The field-emission measurements showed that the turn-on field was 4.8 V/μm at an emission current density of 10 μA/cm2. The current density was 0.5 mA/cm2 at 6.6 V/μm. This approach provides a novel route for fabricating CNT-based field-emission displays. Received: 3 May 2002 / Accepted: 6 May 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +82-54/279-8298, E-mail: ce20047@postech.ac.kr  相似文献   

18.
Nitrogen was implanted into chemical vapor deposition (CVD) diamond films and the electron field emission properties of the nitrogenated diamond films were investigated. Nitrogen implantation was carried out using 10 keV in the dose range from 1×1016 to 5×1017 cm-2 at room temperature. Raman and X-ray photoelectron spectroscopy measurements revealed that nitrogen implantation damaged the structure of the diamond film and promoted the formation of sp2 C–C and sp2 C–N bondings. Increasing the implantation dose could lower the threshold field of the emission of the diamond film from 18 V/m to 4 V/m. The effective work function of the nitrogen-implanted CVD diamond films was estimated to be in the range of 0.01–0.1 eV. The enhancement of field emission for nitrogen-implanted CVD diamond films was attributed to the increase of the sp2 C bonds fraction and the formation of defect bands within the bulk diamond band gap induced by nitrogen implantation, which could alter the work function and elevate the Fermi level. Consequently, the energy barrier for electron tunneling was reduced.  相似文献   

19.
Carbon films were prepared on single crystal silicon substrates by heat-treatment of a polymer-poly(phenylcarbyne) at 800 °C in Ar atmosphere. The heat-treatment caused the change of the polymer into carbon film, which exhibited good field emission properties. Low turn-on emission field of 4.3 V/μm (at 0.1 μA/cm2) and high emission current density of 250 μA/cm2 (at 10 V/μm) were observed for the polymer-converted carbon films. This behavior was demonstrated to be mainly related to the microstructure of the carbon films, which consisted of fine carbon nanoparticles with high sp2 bonding. The carbon films, which can be deposited simply with large areas, are promising for practical applications in field emission display.  相似文献   

20.
Transport and field-emission properties of as-synthesized CNx and BNCx (x<0.1) multi-walled nanotubes were compared in detail. Individual ropes made of these nanotubes and macrofilms of those were tested. Before measurements, the nanotubes were thoroughly characterized using high-resolution and energy-filtered electron microscopy, electron diffraction and electron-energy-loss spectroscopy. Individual ropes composed of dozens of CNx nanotubes displayed well-defined metallic behavior and low resistivities of ∼10–100 kΩ or less at room temperature, whereas those made of BNCx nanotubes exhibited semiconducting properties and high resistivities of ∼50–300 MΩ. Both types of ropes revealed good field-emission properties with emitting currents per rope reaching ∼4 μA(CNx) and ∼2 μA (BNCx), albeit the latter ropes se- verely deteriorated during the field emission. Macrofilms made of randomly oriented CNx or BNCx nanotubes displayed low and similar turn-on fields of ∼2–3 V/μm. 3 mA/cm2 (BNCx) and 5.5 mA/cm2 (CNx) current densities were reached at 5.5 V/μm macroscopic fields. At a current density of 0.2–0.4 mA/cm2 both types of compound nanotubes exhibited equally good emission stability over tens of minutes; by contrast, on increasing the current density to 0.2–0.4 A/cm2, only CNx films continued to emit steadily, while the field emission from BNCx nanotube films was prone to fast degradation within several tens of seconds, likely due to arcing and/or resistive heating. Received: 29 October 2002 / Accepted: 1 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号