首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A continuous flow liquid membrane extraction (CFLME)-C18 precolumn-liquid chromatography system was developed for preconcentration and determination of chlorinated phenols (CPs). After preconcentration by CFLME, which is based on the combination of continuous flow liquid-liquid extraction and supported liquid membrane, CPs were enriched in 960 μl of 0.5 mol l−1 NaOH used as acceptor. This acceptor was on-line neutralized and transported onto the C18 precolumn where analytes were absorbed and focused. Then the focused analytes were injected onto the C18 analytical column for separation and detected at 215 nm with a diode array detector. CFLME related parameters such as flow rates, pH of donor and acceptor concentration were optimized. The proposed method presents detection limits of 0.02-0.09 μg l−1 (S/N=3) when 100 ml samples were enriched. The proposed method was successfully applied to determine CPs in tap water and river water samples with spiked recoveries in the range of 70-121%.  相似文献   

2.
Actually there is a great trend on the development of effective analytical methods for monitoring trace levels of various phenols which can indicate, among others compounds, the water quality. A simple, inexpensive supported liquid membrane (SLM) device was used in combination with commercially available capillary electrophoresis (CE) equipment for the direct determination of chlorophenols in surface water samples. The manifold was used simultaneously to extract and preconcentrate the analytes from liquid samples. In the extraction set-up, the donor phase (4 mL) was placed in the CE vial, where a micro-membrane extraction unit (MMEU) accommodating the acceptor phase (100 μL) in its lumen was immersed. The supported liquid membrane was constructed by impregnating a porous Fluoropore Teflon (PTFE) membrane with a water-immiscible organic solvent (dihexyl ether). The extraction process was optimized with regard to the pH of the donor and acceptor phases, membrane liquid, extraction time and voltage applied to the inlet or outlet vial during extraction. The chlorinated phenols pentachlorophenol (PCP), 2,3,6 trichlorophenol (TCP) and 2,6 dichlorophenol (DCP) were thus efficiently separated by CE, using tris(hydroxymethyl)aminomethane (Tris) and an NaH2PO4 solution containing 1% (v/v) methanol at pH 10.5 as running buffer.  相似文献   

3.
建立了中空纤维液相微萃取-高效液相色谱法测定纺织品中10种含氯苯酚类化合物的方法。系统地优化了影响萃取效率的因素,得到的最佳萃取条件为:萃取溶剂为正己烷,接受相NaOH溶液的浓度为0.10 mol/L,萃取时间为60 min,搅拌速度为600 r/min。在最佳萃取条件下,10种含氯苯酚在0.01~1.00 mg/L范围内线性关系良好(r>0.999),10种含氯苯酚的检出限(信噪比为3)为0.01 mg/kg,富集倍数为95~101。在空白样品中添加0.01、0.05和0.1 mg/kg 3个不同水平的10种含氯苯酚类化合物,其平均回收率为78.8%~105.1%,相对标准偏差为0.3%~7.3%。研究结果表明该方法灵敏度高、简便、准确,可用于纺织品中含氯苯酚类化合物的测定。  相似文献   

4.
Summary Two analytical methods have been developed for the determination in water of 18 priority phenolics listed in US EPA method 604 and on EEC list 76/464. A solidphase extraction system using eight different sorbents packed in a precolumn was coupled on-line with a liquid chromatograph with UV detection. The ensuing method uses 50–100 mL of ground water; its performance was compared with that of an off-line method using Empore extraction disks and 1 L water samples. Phenol recoveries varied from <20 to 100% for concentrations in the range 0.1–10 g/L at an acid pH. The presence of the phenols in water was confirmed by using thermospray LC-mass spectrometry in the negative ion mode. The stability of the phenols in water was studied at a 10 g/l level in ground and estuarine water at acid pH (2.5–3) and at 4°C for 1 month. The system was validated by various interlaboratory exercises with samples containing 2,4,6-trichlorophenol and pentachlorophenol at concentrations from 0.1 to 0.5 g/L.  相似文献   

5.
This paper describes a new analytical system, based on the combination of continuous flow liquid membrane extraction (CFLME) enrichment and capillary electrophoresis (CE) separation, for analysis of chlorinated phenols in water samples. Five chlorinated phenols including 3-chlorophenol (3CP), 4-chlorophenol (4CP) 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) were separated by CE with Tris/sodium dihydrogen phosphate solution containing methanol 1% (v/v) as the run buffer. CFLME related parameters were investigated and optimal enrichment was obtained by using 0.3 mol L(-1) Tris as acceptor and with a sample pH 5.0, a sample flow rate of 4.0 mL min(-1), and an enrichment sample volume of 150 mL. The detection limit (S/N= 3) was 6.9, 1.0, and 1.7 ng mL(-1) for DCP, PCP, and TCP, respectively. The reproducibility (RSD%, n = 6) was 5.7 for DCP, 2.5 for PCP, and 2.8% for TCP (n = 6). The proposed method was applied to the determination of chlorinated phenols in spiked water samples with relatively satisfactory recoveries.  相似文献   

6.
Summary A rapid, accurate and sensitive method is described for the analysis of phenolic compounds, including phenol, alkylphenols, halogenated phenols and nitrophenols in tap, ground and river water samples. The method consists in direct acetylation of the aqueous phenols with acetic anhydride, extraction of the phenol acetates with a C18 disk and analysis by gas chromatography with an ion-trap detector mass spectrometer. Using this method, the sample preparation time was approximately 1.5 h for six 1-L water samples, and recoveries for most of the phenolic compounds studied were more than 80% at concentration levels of 0.1 and 1.0g L–1. The detection limits were in the range 2 to 15 ng L–1 for phenol, alkylphenols and halogenated phenols, and 25 to 50 ng L–1 for nitrophenols.  相似文献   

7.
A simple liquid–liquid–liquid microextraction device of new design was used to pre-concentrate phenols from water samples before liquid chromatographic (LC) analysis. Extraction was induced by the pH difference inside and outside an organic phase located at the interface. The pH of the donor phase outside the organic phase was adjusted to 1 with HCl whereas the acceptor phase was a basic solution at pH 13. On stirring neutral phenols were extracted into the organic solvent then back-extracted into 1 μL of basic acceptor solution suspended from the tip of a micro syringe. The acceptor phase was then withdrawn into the micro syringe and injected directly into the LC. The technique uses a low-cost disposable extraction ‘device’ and is very convenient to operate. Up to 230-fold enrichment of analytes could be achieved. This procedure could also serve as a sample clean-up step because neutral and basic compounds were not extracted into the acceptor phase. The RSD (n = 5) was better than 6.2% and the linear calibration range was from 1 to 1000 µg–L−1 with r 2 ≥ 0.992.Optimization of experimental conditions (rate of stirring, ionic strength of the sample solution, concentration of reagents, time of extraction, and organic solvent volume) were also examined. The method was applied to the determination of phenols in tap and well waters.Revised: 14 February and 29 March 2005  相似文献   

8.
Combining the continuous flow liquid-liquid extraction (CFLLE) and supported liquid membrane (SLM) extraction, a novel aqueous-aqueous extraction technique that we termed continuous flow liquid membrane extraction (CFLME) is developed for trace-enrichment. The analyte was firstly extracted into the organic phase in the CFLLE step, then transported onto the organic liquid membrane that formed on the surface of the micro porous membrane of the SLM equipment. Finally, it passed through the liquid membrane and was trapped by the acceptor. Aspects related to CFLME were studied by using dichloromethane as liquid membrane, and sulfonylurea herbicides as model compounds. An enrichment factor of over 1000 was obtained when 10 μg l−1 of MSM was enriched for 120 min by this technique. The drawbacks of only a few organic solvents can be selected as liquid membrane with a limited lifetime in SLM operation was overcome. In this CFLME method, almost all solvents that used in the conventional liquid-liquid extraction (LLE) can be adopted and the lifetime of liquid membrane is no longer a problem.  相似文献   

9.
Díaz TG  Cabanillas AG  Soto MD  Ortiz JM 《Talanta》2008,76(4):809-814
Square-wave adsorptive-stripping voltammetry technique has been used to develop a method for the determination of fenthion in olive oil. Due to the fact that fenthion does not give any electrochemical signal at mercury electrode, the method has been based on a previous oxidation of fenthion to its metabolite, fenthion-sulfoxide, by using KMnO4. The metabolite gives rise to a peak due to an adsorptive-reductive process at −0.786 V. Fenthion is isolated from olive oil by carrying out a solid–liquid extraction procedure using silica cartridge, followed by a liquid–liquid partitioning with acetonitrile. The detection limit in olive oil is 78.8 ng g−1 and recoveries for four levels of fortification are ranged from 85% to 109%. On the other hand, it has been developed a method for the simultaneous determination of fenthion and its metabolite fenthion-sulfoxide, in river water. Pesticides are isolated from water by carrying out a liquid–liquid partitioning with trichloromethane. The detection limits are 0.41 ng g−1 and 0.44 ng g−1, for fenthion and fenthion-sulfoxide, respectively. Recoveries for three levels of fortification are ranged from 96% to 103% for fenthion and 94% to 104% for fenthion-sulfoxide.  相似文献   

10.
Study of the extraction of W(VI) ions using supported liquid membrane has been carried out. The carrier used for this metal ion transport, is tri-n-octylamine (TOA) dissolved in xylene. The liquid was supported in microporous polypropylene film. The parameters studied are effect of carrier concentration in the membrane, acid concentrations in the feed solution, concentration of stripping agent on transport of W(VI) ions and of temperature on the transport properties of these supported liquid membranes. The optimum conditions of transport for these metal ions determined are, TOA concentration, 0.66 mol·dm–3 (TOA); HF concentration in the feed solution, 0.01 mol·dm–3 and concentration of NaOH used as stripping agent 2.5 mol·dm–3. The maximum flux and permeability determined under optimum conditions are 3.06·10–5 mol·m–2·s–1 and 8.44·10–11 mol· ·m2·s–1 at 25±2°C and 4.21·10–5 mol·m–2·s–1 and 11.55·10–11 mol·m2·s–1 at 65°C, respectively. The diffusion coefficients for the metal ion carrier complex in the membrane have also been determined. Under the optimum conditions the value for the metal ion carrier complex is 0.14·10–11 mol·m2·s–1. Mechanism of transport and the complex formed in the presence of HF have also been discussed. The transport process involves two carrier amine molecules and two protons.  相似文献   

11.
Summary A new analytical technique; purge-and-membrane-electron capture detection (ECD), is described and applied to the screening of halogenated aliphatic hydrocarbons. A water sample is first purged by helium and the purged compounds are collected from the gas phase through a silicone membrane to the analytical system. Purge-and-membrane-ECD provides very fast, selective and sensitive screening method for halogenated aliphatic hydrocarbons. The method was compared with conventional direct membrane extraction. Results obtained show that the limits of detection (0.01–2 g L–1) were comparable with both methods. However, significant shorter response times were measured with purge-and-trap than with direct membrane extraction.  相似文献   

12.
A method is described for measurement of freely dissolved copper concentrations in natural water samples using supported liquid membrane (SLM) extraction under equilibrium conditions, a technique denoted equilibrium sampling through membranes (ESTM). For this purpose, 1,10-dibenzyl-1,10-diaza-18-crown-6 as neutral carrier and oleic acid were used in the membrane phase. The main variables optimised were the carrier used to form the metal complexes, the organic solvent used in the membrane, the countercation, pH, the ligand used in the acceptor phase, the extraction time, and the flow rate of the donor phase. After the optimisation process an enrichment factor of 18.5 was obtained. Equilibrium conditions were reached after extraction for 60 min if a flow rate of 1.0 mL min–1 or greater was used. When different ligands such as humic acids, phthalic acid, and EDTA were added to the sample solution, and sample pH ranged from 6 to 8, the results obtained for freely dissolved copper concentrations were in a good agreement with results from speciation calculations performed with Visual Minteq V 2.30, Cheaqs V L20.1, and WinHumic V. The developed technique was applied to analysis of stream and leachate water.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C8MIM][PF6] with 14% TOPO (w/v); donor phase: 4 mL, pH 4.5 KH2PO4 with 2 M Na2SO4; acceptor phase: 25 μL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1–0.4 μg/L, RSD ≤ 5%) and good linear range (1–2000 ng/mL, R2 ≥ 0.999) were obtained for all the analytes. The presence of humic acid (0–25 mg/L dissolved organic carbon) and bovine serum albumin (0–100 μg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2–103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.  相似文献   

14.
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%.  相似文献   

15.
In this work, the suitability of the microporous membrane liquid–liquid extraction (MMLLE) technique for the concentration of several organophosphate esters (OPs) in water samples is assessed. Analytes were first extracted into a few microlitres of an organic solvent, immobilized in the pores of a hollow polypropylene membrane, and then determined by gas chromatography with nitrogen–phosphorus detection (GC–NPD). Main parameters controlling the efficiency of the extraction step were identified and their effects on the performance of the technique discussed. Under final working conditions, 2 cm long polypropylene membranes, containing about 7 μL of octanol in the pores, were dipped in a glass vial filled with 115 mL of water with a 30% of sodium chloride. Extractions were carried out for 12 h, at room temperature, under magnetic stirring. After that, analytes were recovered from the membrane with 0.2 mL of ethyl acetate. This extract was mixed with the internal standard (50 μL of a tripentyl phosphate solution in the same solvent) and finally reduced to ca. 50 μL. Overall enrichment factors for the optimized method ranged from 35 to 1400 times, and the achieved limits of quantification from 0.008 to 0.12 ng mL−1, depending on the considered compound. Globally, the method showed an acceptable linearity and precision for all species, except for tris(2-ethylhexyl) phosphate (TEHP). Performance of the MMLLE approach is compared with that reported for other solid- and liquid-phase microextraction techniques and its suitability for the analysis of real water samples discussed.  相似文献   

16.
Summary Analytical methods for the determination in environmental samples, of some selected Polycyclic Aromatic Hydrocarbons (PAH's), which are included on the EPA Priority Pollutant list, have been developed and evaluated. The methodology involves the extraction of PAH's from water samples by solvent extraction with dichloromethane. Solid samples were ultrasonically extracted with acetone/hexane and the extract was cleaned up on a silica gel/alumina column. The concentrated and cleaned up extracts were analysed by HPLC on a polymeric C18 column using a gradient of acetonitrile/water as the mobile phase and fluorescence detection. Typical detection limits lie in the range of 1–30 ng ml–1 of the analytes, but after sample pretreatment detection limits of 10–300 ng l–1 were obtained. The extraction, clean-up and HPLC methodology was applied to the determination of selected PAH's in coal washings samples and the method was validated by the quantification of PAH's in a natural contaminated and a spiked sediment.  相似文献   

17.
The intermediate level liquid radioactive wastes (RAW) isussed from nuclear power plants have high salt contents ca 200 g·dm–3, the pH of liquid RAW being 12.5–13.7. A convenient method for separation of cesium under these conditions is solvent extraction with substituted phenols. For this purpose weere tested antioxidants produced in Czechoslovakia: AO 2246 [2,2-methylene-bis-(4-methyl-6-tertbutyl)phenol]; AO 4 [2-tertbutyl-4-(2-phenylpropyl)phenol]; AO 4K [2,6-ditertbuty-4-methylphenol]; AO 301 [2,2-methylene-bis-(4-{2-phenylpropyl}-6-tert-butyl)phenol]; and one antioxidant imporoted from Japan—NOCRAC 2246. This antioxidant is equivalent to AO 2246. After the first experiment it was found that the extraction efficiency for antioxidants AO 4 and Ao 301 is very low and the following experiments were made with AO 2246 (NOCRAC 2246) and AO 4K. Some effects on extracton as, pH of water phase, influence of diluent, influence of concentration of antioxidants, extraction time, were studied. The best results gave antioxidant NOCRAC 2246 in nitrobenzene, the extraction efficiency was 92.3% with pH 13.23.  相似文献   

18.
A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium–DDTC complex was formed and extracted into the fine droplets of HMIMPF6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L− 1, and the characteristic mass (m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L− 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2–106%.  相似文献   

19.
A method combining accelerated solvent extraction with dispersive liquid–liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m‐cresol, 2,4‐dichlorophenol, and 2,4,6‐trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid–liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid–liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1–3080 ng/g), low limits of detection (0.06–1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9–110%. These findings indicate that accelerated solvent extraction with dispersive liquid–liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples.  相似文献   

20.
Poly(styrene-divinylbenzene) (PS-DVB) membrane extraction disks were used as sorbents for the on-line solid phase extraction of 13 phenols (nitro and chlorophenols) in river and tap waters. Determination was performed by liquid chromatography with electrochemical detection (LC-ED). An acetate buffer-acetonitrile-methanol mixture as mobile phase and amperometric detection at +1100 mV were used. High water volumes, up to 250 ml, can be preconcentrated without loss of phenols (recoveries between 80% and 100%) except for the more polar ones. Moreover, detection limits between 0.01 and 0.1 μg l−1 in tap water and between 0.1 and 1.0 μg−1 in river water were obtained. The method has been applied to the analysis of two river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号