共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
采用物理喷束淀积技术,制备了聚乙烯咔唑(PVK)与富勒烯C60的组合薄膜系列,通过测量这些组合膜和纯膜的稳态和瞬态光生电压,研究了组合膜光诱导电荷转移性质.发现PVK/C60双层组合膜的光生电压比纯PVK薄膜和PVK与C60均匀混合膜有5个数量级的增强,比纯C60薄膜也有大于一个数量级的增强.实验结果证明:在光激发下,组合膜中两种分子间发生了快速的电子转移,并在PVK/C60界面处产生有效的电荷分离,导致PVK/C60双层组合膜光生电压的显著增强.并通过与ITO/C60/Al结构的瞬态光生电压响应的比较,
关键词: 相似文献
5.
6.
7.
8.
在200 keV重离子加速器上,用120—360 keV的H,N,Ar和Mo离子注入C60薄膜.对注入后薄膜的拉曼谱进行了分析.结果表明,不同离子注入C60薄膜后,C60的1469 cm-1特征峰随注入剂量的增加均呈指数式下降,同时在1300—1700 cm-1范围出现非晶碳峰,并逐渐增强,最终完全非晶化.而且1469 cm-1拉曼峰的强度及C60薄膜完全非晶化所对应的剂量与注入离子的种类和能量有关.进一步的分析表明,C60分子的损伤主要是由注入离子的核能量转移所造成,与电子能量转移无关.H离子注入C60薄膜后,1469 cm-1处特征拉曼峰向短波方向非对称展宽,这可能是注入的H离子通过电子能量转移使C60分子发生聚合的结果.
关键词: 相似文献
9.
10.
11.
12.
13.
14.
15.
The electronic structure and vibrational spectrum of the C60 film condensed on a 2H- MoS2(0001) surface have been investigated by X-ray photoelectron spectroscopy (XPS), ul-traviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES) and infrared high-resolution electron-energy-loss spectroscopy (HREELS). AES analysis showed that at low energy side of the main transition, C60 contains a total of three peaks just like that of graphite. However, the energy position of the KLL main Auger transition of C60 looks like that of diamond, indicating that the hybridization of the carbon atoms in C60 is not strictly in sp2- bonded state but that the curvature of the molecular surface introduces some sp2pz- bonded character into the molecular orbitals. XPS showed that the C 1s binding energy in C60 was 285.0eV, and its main line was very symmetric and offered no indication of more than a single carbon species. In UPS measurement the valence band spectrum of C60 within 10eV below the Fermi level (EF) shows a very distinct five-band structure that character-izes the electronic structure of the C60 molecule. HREEL results showed that the spectrum obtained from the C60 film has very rich vibrational structure. At least, four distinct main loss peaks can be identified below 200 meV. The most intense loss was recorded at 66 meV, and relatively less intense losses were recorded at 95, 164 and 197meV at a primary energy of electron beam EP = 2.0eV. The other energy-loss peaks at 46, 136, 157 and 186meV in HREEL spectrum are rather weak. These results have been compared to infrared spectrum data of the crystalline solid C60 taken from recent literatures. 相似文献