首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
利用电化学沉积法将铁氰化钐沉积在玻碳电极表面,形成铁氰化钐修饰电极,并利用循环伏安法研究了鸟嘌呤和腺嘌呤在该修饰电极上的电化学行为。相比裸玻碳电极,鸟嘌呤和腺嘌呤在修饰电极上的氧化峰电流增大,氧化峰电位降低,说明该修饰电极对鸟嘌呤和腺嘌呤的氧化具有良好的电催化能力。在优化条件下,两者的氧化峰电流与其浓度在5.0~70μmol·L-1范围内呈现线性关系,检出限(3S/N)均为1.0μmol·L-1。  相似文献   

2.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐为粘合剂制备了碳糊电极,然后将氧化石墨烯滴涂到碳糊电极表面制成了一种新型的氧化石墨烯修饰碳离子液体电极。研究了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。实验结果表明,在0.1 mol/L醋酸盐缓冲溶液中(pH4.5),鸟嘌呤和腺嘌呤在该修饰电极上具有良好的电化学行为,在2.0×10-7~1.5×10-5mol/L浓度范围内鸟嘌呤和腺嘌呤的浓度在该电极上与电化学响应信号呈良好的线性关系,相关系数分别为为0.992和0.996。信噪比为3时,检出限为1.0×10-8mol/L。  相似文献   

3.
7-甲基鸟苷在玻碳电极上的伏安行为研究   总被引:1,自引:0,他引:1  
研究了修饰核苷7-甲基鸟苷(7-Methylguanosine)的电化学行为及测定方法.在pH 1.98的B-R缓冲液中,用循环伏安法(CV),线性扫描伏安法(LSV)、微分脉冲伏安法(DPV)等现代电化学技术研究7-甲基鸟苷在玻碳电极(GCE)上的伏安行为.实验表明,7-甲基鸟苷在 1.036 V(vs.SCE)电位处产生一个阳极氧化峰,峰电流与7-甲基鸟苷的浓度在5.0×10-5-2.0×10-6mol/L范围内呈良好的线性关系,最低检测限(D=2σ/K)为4.1×10-7mol/L.并用恒电位库仑电解法等方法对其氧化机理进行了较为详细的探讨,得到了可能的电极反应机理:7-甲基鸟苷在玻碳电极上的电极反应是属于失1质子和2电子的不可逆的氧化反应.  相似文献   

4.
将镍纳米粒子与石蜡、石墨按照一定比例混合制备镍纳米粒子修饰碳糊电极,采用循环伏安法(CV)对修饰碳糊电极进行电化学表征,在0.1 mol/L B-R缓冲溶液(pH4.5)中研究了鸟嘌呤在该修饰电极上的电化学行为。结果表明,与裸碳糊电极相比,以掺杂法制备的镍纳米粒子修饰电极能够明显降低鸟嘌呤的过电位,增大其氧化电流,很好地催化氧化鸟嘌呤。在优化的实验条件下,鸟嘌呤在该修饰电极上的氧化峰电流与其浓度在1.0×10-5~5.0×10-4mol/L范围内呈良好的线性关系,检出限(3σ)为7.5×10-6mol/L。  相似文献   

5.
铁氰化钆修饰电极对鸟嘌呤的电催化氧化及应用   总被引:2,自引:0,他引:2  
用电化学沉积法制备了稀土铁氰化钆修饰玻碳电极(GdHCF/GC/CME),考察了该电极对鸟嘌呤的电催化氧化性能,同时根据Fenton反应产生的羟基自由基对鸟嘌呤的氧化作用和修饰电极氧化作用之间的竞争机理,对抗坏血酸清除羟基自由基进行了初步评价.实验结果表明,修饰电极对鸟嘌呤具有很好的电催化氧化性能.在HAc-NaAc缓冲液(pH=5.1)中,鸟嘌呤在1.0×10-6~4.6×10-5 mol/L浓度范围内与其氧化峰电流呈良好的线性关系,其线性回归方程为Ip(μA)=0.1112C 2.8715,r=0.9889;检出限为3.3×10-7 mol/L.以此电极评价抗坏血酸对羟基自由基的清除作用,取得了较好的效果,为羟基自由基清除剂的筛选提供了一种新的方法.  相似文献   

6.
夏雅淋  邓春艳  向娟 《电化学》2012,18(4):365-370
利用掺硼碳纳米管(BCNTs)/GC电极研究了鸟嘌呤(G)和腺嘌呤(A)的电化学氧化行为. 与GC和CNTs/GC电极相比,BCNTs/GC电极具有更强的电催化活性,且响应电流明显增加. 两混合样品在BCNTs/GC电极上的氧化峰间隔较大,可实现对A和G的同时检测.  相似文献   

7.
将硫堇电聚合在光透电极的表面,再利用壳聚糖将黄嘌呤氧化酶固定在具有光电活性的聚硫堇光透电极的表面上制备了光致电化学鸟嘌呤传感器.基于同时具有光敏和电子受体功能的聚硫堇光电界面,该传感器能与黄嘌呤氧化酶催化鸟嘌呤氧化而产生的电子供体(过氧化氢)产生光致电化学响应,通过测量光致电化学反应产生的光电流实现了对鸟嘌呤的检测.文中探讨了传感器的光致电化学响应机理,讨论了偏压、酶量、电解质溶液pH对传感器测定鸟嘌呤的影响.在优化的实验条件下,该传感器对鸟嘌呤的测定范围为1.00~200μmol/L,检出限为0.55μmol/L,9次测定的相对标准偏差小于3.92%.应用该传感器对酸解DNA脱出的鸟嘌呤基和药品阿昔洛韦进行的检测实验显示,相对标准偏差小于5.37%,加标回收率为96.8%~106%.该传感器的制备和对鸟嘌呤的检测不需要过氧化物酶,不需要除氧,有经济、简便等优点.  相似文献   

8.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

9.
建立一种灵敏的测定修饰核苷1 甲基鸟苷(1 MG)的电化学分析方法.在pH为2.00的BR缓冲液中,用循环伏安法(CV),线性扫描伏安法(LSV),方波伏安法(SWV),微分脉冲伏安法(DPV)等现代电化学技术研究了肿瘤标记物1 甲基鸟苷在玻碳电极(GCE)上的伏安行为.实验结果表明,pH为2.00的BR缓冲液中,1 甲基鸟苷在+1.16V(vs.甘汞)电位处产生一个灵敏的微分脉冲阳极氧化峰,该氧化峰的峰电流值与1 甲基鸟苷的浓度在4.0×10-7~1.0×10-5mol/L范围内呈良好的线性关系,最低检测限达(定义为D=2σ/K)6.6×10-8mol/L.将该法应用于兔血清及尿样中1 甲基鸟苷的测定,回收率在96.0%~102.0%之间,5次测定的相对标准偏差(RSD)均小于3 5%.并初步研究了1 甲基鸟苷的电化学机理.  相似文献   

10.
采用高温热退火方法制备了氮掺杂的石墨烯,并制备了氮掺杂石墨烯修饰玻碳电极(NG/GCE),研究其对鸟嘌呤的电催化氧化作用.实验考察了溶液pH值、扫速、鸟嘌呤浓度的影响.结果表明,鸟嘌呤在NG/GCE上的氧化是不可逆过程,修饰电极可以增强鸟嘌呤在电极表面的吸附,对鸟嘌呤具有很好的电催化氧化性能,降低了鸟嘌呤氧化电位.在pH=7.0的磷酸盐缓冲溶液中检测鸟嘌呤,其氧化峰电流在5.0×10-6~1.0×10-4 mol/L浓度范围内呈良好的线性关系,检出限(3σ)为1.0×10-6 mol/L.  相似文献   

11.
The electrochemical behaviors of guanosine on the ionic liquid of N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CPE) was studied in this paper and further used for guanosine detection. Guanosine showed an adsorption irreversible oxidation process on the carbon ionic liquid electrode (CILE) with the oxidation peak potential located at 1.12 V (vs. SCE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with that on the traditional carbon paste electrode, small shift of the oxidation peak potentials appeared but with a great increment of the oxidation peak current on the CILE, which was due to the presence of ionic liquid in the modified electrode adsorbed the guanosine on the surface and promoted the electrochemical response. The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n), and the electrode reaction standard rate constant (ks) were calculated as 0.74, 1.9 and 1.26 × 10−4 s−1, respectively. Under the optimal conditions the oxidation peak current showed a good linear relationship with the guanosine concentration in the range from 1.0 × 10−6 to 1.0 × 10−4 mol/L by cyclic voltammetry with the detection limit of 2.61 × 10−7 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine oxidation. The CILE showed good ability to distinguish the electrochemical response of guanosine and guanine in the mixture solution. The urine samples were further detected by the proposed method with satisfactory results.  相似文献   

12.
The electrochemical oxidation of guanosine and xanthosine, which only differ in the presence of an oxygen atom at C2 position instead of an amine group, is studied on pyrolytic graphite electrodes at different electrolysis time scales in solutions of physiological pH. The oxidation products adsorbed on the electrode surface were electrochemical characterized in terms of variation of the formal potential with pH and catalytic activity towards the oxidation of NADH. The results were compared with those previously described for the oxidation of guanosine and adenosine in alkaline solutions. A common oxidation product is described, the oxidized form of 9‐β‐D ‐ribofuranosyluric acid, which is proposed as the point of convergence in the oxidation routes of all three purine nucleosides.  相似文献   

13.
We herein explore a novel route for oxidative stress in DNA by using electrochemistry as mimicking tool. Essentially, the electrochemical oxidation of guanine and adenine nucleosides and oligo-homo-nucleotides at pyrolytic graphite electrodes in neutral and alkaline aqueous solutions was studied. Under these experimental conditions all these compounds give rise to an adsorbed product not previously described, which was electrochemically and kinetically characterized. The virtually identical kinetic and electrochemical features exhibited by the oxidized compounds generated from all precursors strongly suggest a common species arising from both adenine and guanine derivatives. Supported by DFT calculations, we propose two convergent pathways for the electrochemical oxidation of adenosine and guanosine. Those calculations indicate that the common oxidized base product forms stable H-bond base pairs with both thymine and cytosine.  相似文献   

14.
P Li  W Zhang  J Zhao  F Meng  Q Yue  L Wang  H Li  X Gu  S Zhang  J Liu 《The Analyst》2012,137(18):4318-4326
An antioxidant (AO) amperometric technique based on guanine attached to graphene and Fe(3)O(4) nanoparticles (NPs) magnetic materials was developed. Guanine molecules acted as an antioxidant competitor were bonded with graphene nanosheets, onto which magnetic Fe(3)O(4) NPs were attached and the as-prepared magnetic composite can be attracted to the electrode surface by an external magnetic field. When applied with negative potentials, the dissolved oxygen was reduced to H(2)O(2) at the electrode surface, and then reacted with the EDTA-Fe(ii) complex via a Fenton-like reaction to produce OH radicals. After oxidation damage by OH radicals, the electrochemical oxidation of guanine gave a decreased current. In the presence of AOs, the reactive oxygen species (ROS, e.g. OH radicals and H(2)O(2)) were scavenged by AOs and fewer guanine probe molecules were oxidized, thus inducing a higher electrochemical oxidation current of guanine. So AOs competed with the guanine probe molecules toward oxidation by ROS. The current signals of the guanine probe molecules were proportional to the concentrations of AOs. A kinetic model was proposed to quantify the ROS scavenging capacities of the AOs. Using guanine as an oxidizable probe and OH radicals and H(2)O(2) as endogenous ROS, this kind of AO detection technique mimicks the antioxidant protection mechanism by small AO molecules in the human body.  相似文献   

15.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

16.
《Electroanalysis》2018,30(1):48-56
Leishmaniasis is one of the most important parasitic neglected disease. The electrochemical evaluation of the antileishmanial drug miltefosine‐dsDNA interaction was investigated in incubated solutions and using dsDNA‐electrochemical biosensors, following the changes in the oxidation peaks of guanosine and adenosine residues, and the occurrence of the free guanine residues, electrochemical signal. The electrochemical behaviour of miltefosine was also investigated, at a glassy carbon electrode, using cyclic, differential pulse and square wave voltammetry and no electrochemical redox processes were observed. The interaction mechanism of miltefosine‐dsDNA occurs in two ways: independent of the dsDNA sequence, and leading to the condensation/aggregation of DNA strands, producing a rigid miltefosine‐dsDNA complex structure, and a preferential interaction between the guanine hydrogen atoms in the C−G base pair and miltefosine, causing the release of guanine residues detected on the electrode surface. Miltefosine did not induce oxidative damage to DNA in the experimental conditions used.  相似文献   

17.
We studied the reactivity of peroxynitrite and different nucleic acid molecules using DNA electrochemical biosensors. SIN‐1 (3‐morpholinosydnonimine) has been used for the simultaneous generation of NO?and superoxide, i.e., as a peroxynitrite (ONOO?) donor. Double strand DNA (dsDNA), single strand DNA (ssDNA) and 15 guanine bases oligonucleotide (Oligo(dG)15) were immobilized on a carbon paste electrode to generate the biosensor and DPV was selected as the electroanalytical technique. Results showed that electrochemical biosensors were very sensitive for detecting interaction between ONOO? and DNA. A down/up effect was observed, i.e., at low ONOO? concentrations the guanine oxidation signal decreased while at high ONOO? concentrations the guanine oxidation current increased. Oligo(dG)15 exhibited greater interaction at low ONOO? concentrations than the other DNA molecules. The reactivity between ONOO? and DNA was also evaluated in solution phase, showing the same down/up effect. Finally, the capacity of DNA to hybridize was prevented after interaction with ONOO?.  相似文献   

18.
Four DNA electrochemical biosensors using four types of DNA (calf thymus ssDNA, calf thymus dsDNA, salmon testis ssDNA and salmon testis dsDNA) were constructed using graphite screen printed electrodes. These biosensors were exploited as analytical tool to detect polycyclic aromatic hydrocarbons-DNA interactions using benzo(a)anthracene and phenantrene as model analytes, the guanine oxidation peak variation being the signal revealing the interaction between PAHs and immobilized DNA. The salmon testis ssDNA biosensor resulted as the most promising device and was further evaluated for benzo(a)anthracene, fluorene, indeno(1,2,3-cd)pyrene, anthracene, and phenanthrene in 5–40 ng mL?1 solutions, and for benzo(a)pyrene (5–50 ng mL?1). A concentration dependent variation of the DNA guanine oxidation peak was observed for all compounds. The effect of benzo(a)pyrene ultraviolet (UV) activation on the benzo(a)pyrene (BaP)-DNA interaction was evaluated at concentration levels of 20 and 50 ng mL?1, and a 3.5- and 2.7-fold increases of the guanine oxidation peak was measured respectively. The salmon testis ssDNA biosensor was examined with PAHs contaminated samples of Mytilus galloprovincialis. Upon UV irradiation of three sample extracts exceeding the BaP maximum level, a positive variation of the DNA guanine oxidation was obtained. An average 2.4-fold increase of the guanine oxidation peak was detected demonstrating that the sensor can be used to detect toxic degradation products of PAHs.  相似文献   

19.
Herein, a sodium montmorillonite-modified carbon paste electrode is described for the electrochemical determination of guanine. Guanine yields a well-defined and very sensitive oxidation peak at the sodium montmorillonite-modified carbon paste electrode. Compared with the unmodified carbon paste electrode, the modified electrode facilitates the electron transfer of guanine, since it notably increases the oxidation peak current and lowers the oxidation overpotential of guanine. Based on this, a simple sensitive reliable electrochemical method is proposed for the detection of guanine after all the experimental parameters, such as solution pH value, sodium montmorillonite content in the carbon paste electrode, accumulation potential, and time, are optimized. Under the optimized conditions, the oxidation peak current of guanine varies linearly with its concentration in the range 5.0×10−8 to 2.0×10−5 M and the detection limit (signal-to-noise=3) is 2.0×10−8 M after 4-min accumulation. This method is successfully demonstrated with urine samples. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 2, pp. 178–182. The text was submitted by the authors in English.  相似文献   

20.
The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in ‘nanoera’. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号