首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the ability of quantum discord (QD) and entanglements (concurrence, EoF and negativity) to detect the critical points associated to quantum phase transitions (QPTs) for XY models, i.e., the isotropic XY model with three-spin interactions at zero temperature, and the anisotropic XY model in a transverse magnetic field h at finite temperatures. For the case of zero temperature, we found that both entanglements and QD can spotlight the critical points of QPTs for these two models. Moreover, QD versus distance M exhibits the long-range behavior of quantum correlation for the anisotropic XY model, while entanglement is short-ranged. For the case of finite temperatures, we found that negativity has the same behaviors with concurrence at or near transition points. Moreover, QD for the anisotropic XY model can increase with temperature even in the absence of a magnetic field.  相似文献   

2.
One of the remarkable properties of the II–VI diluted magnetic semiconductor (DMS) quantum dot (QD) is the giant Zeeman splitting of the carrier states under application of a magnetic field. This splitting reveals strong exchange interaction between the magnetic ion moment and electronic spins in the QD. A theoretical study of the electron spectrum and of its relaxation to the ground state via the emission of a longitudinal optical (LO) phonon, in a CdSe/ZnMnSe self-assembled quantum dot, is proposed in this work. Numerical calculations showed that the strength of this interaction increases as a function of the magnetic field to become more than 30 meV and allows some level crossings. We have also shown that the electron is more localized in this DMS QD and its relaxation to the ground state via the emission of one LO phonon is allowed.  相似文献   

3.
研究了各向异性非均匀海森堡周期性XY链中的量子失协(QD)和形成纠缠(EOF)。量子失协一般大于形成纠缠。两者之间的差距随着温度的升高或外磁场的增大而减小。调节各向异性系数的大小,可以发现,有些情况下形成纠缠已经消失,而量子失协仍然存在。在大部分参数区域内,量子失协总是大于形成纠缠。  相似文献   

4.
Effects of a longitudinal magnetic field on optical spin injection and detection in InAs/GaAs quantum dot (QD) structures are investigated by optical orientation spectroscopy. An increase in the optical and spin polarization of the QDs is observed with increasing magnetic field in the range 0-2?T, and is attributed to suppression of exciton spin depolarization within the QDs that is promoted by the hyperfine interaction and anisotropic electron-hole exchange interaction. This leads to a corresponding enhancement in spin detection efficiency of the QDs by a factor of up to 2.5. At higher magnetic fields, when these spin depolarization processes are quenched, the electron spin polarization in anisotropic QD structures (such as double QDs that are preferably aligned along a specific crystallographic axis) still exhibits a rather strong field dependence under non-resonant excitation. In contrast, such a field dependence is practically absent in more 'isotropic' QD structures (e.g.?single QDs). We attribute the observed effect to stronger electron spin relaxation in the spin injectors (i.e.?wetting layer and GaAs barriers) of the lower-symmetry QD structures, which also explains the lower spin injection efficiency observed in these structures.  相似文献   

5.
We evaluate the dynamics of two-qubit quantum discord(QD) under the classical phase noise. We compare the dynamics of QD with that of entanglement as measured with concurrence. The influence of mixture degree on the dynamics is also discussed. The results show that there is no simple relation between the quantum correlation and entanglement as seen that QD may be smaller or larger than entanglement, and QD is more robust than the entanglement.  相似文献   

6.
The thermal quantum discord (QD) is studied in a two-qubit Heisenberg XXZ system with Dzyaloshinskii-Moriya (DM) interaction. We compare the thermal QD with thermal entanglement in this system and find remarkable differences between them. For instance, we show situations where QD decreases asymptotically to zero with temperature T while entanglement decreases to zero at the point of critical temperature, situations where QD decreases with certain tunable parameters such as Dz and Dx when entanglement increases. We find that the characteristic of QD is exotic in this system and this possibly offers a potential solution to enhance entanglement of a system. We also show that tunable parameter Dx is more efficient than parameter Dz in most regions for controlling the QD.  相似文献   

7.
M Bagheri Harouni 《中国物理 B》2021,30(9):90301-090301
Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated. The physical system studied is the excess electron spin in two adjacent quantum dots. The influences of magnetic field inhomogeneity as well as spin–orbit coupling are studied. Moreover, the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process. The spin–orbit interaction provides two important features: the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement.  相似文献   

8.
Theoretical calculations of electron–phonon scattering rates in AlGaN/GaN quantum dots (QDs) have been performed by means of effective mass approximation in the frame of finite element method. The influence of a symmetry breaking of the carrier's wave function on the electron dephasing time is investigated for various QDs shapes. In a QD system the electron energy increases when the QD shape changes from a spherical to a non-spherical form. In addition, the influence of the QD shape upon the electronic structure can be modulated by external magnetic fields. We also show that the electron–acoustic phonon scattering rates strongly depend upon both the QD shape and the applied magnetic field. As an additional parameter, the QD shape can be used to modify the electron–acoustic phonon interaction in a wide range. Moreover, the scattering rate of different transitions, such as Δm=0(1), presents distinct magnetic field dependency.  相似文献   

9.
We theoretically investigate the refractive index (RI) changes in an asymmetric quantum dot (QD) underlying an external static magnetic field. We obtain the confined wave functions and energies of an electron in QD by the effective-mass approximation. Using the compact-density-matrix approach and iterative method, we obtain the analytical expressions of linear, nonlinear and total RI changes. The results of numerical calculations for the typical GaAs/AlGaAs QD show that the RI changes are sensitive to the parameters of the asymmetric potential and incident optical intensity. Moreover, the resonance peaks of the RI changes shift with the value of magnetic field B or the radius of the QD changing.  相似文献   

10.
While efficient nuclear polarization has earlier been reported for the charged exciton in InAs/GaAs quantum dots at zero external magnetic field, we report here on a surprisingly high degree of circular polarization, up to ≈60%60%, for the neutral exciton emission in individual InAs/GaAs dots. This high degree of polarization is explained in terms of the appearance of an effective nuclear magnetic field which stabilizes the electron spin. The nuclear polarization is manifested in experiments as a detectable Overhauser shift. In turn, the nuclei located inside the dot are exposed to an effective electron magnetic field, the Knight field. This nuclear polarization is understood as being due to the dynamical nuclear polarization by an electron localized in the QD. The high degree of polarization for the neutral exciton is also suggested to be due to separate in-time capture of electrons and holes into the QD.  相似文献   

11.
We have studied a double-layer self-assembled quantum dot (QD) structures consisting of non-magnetic CdSe and magnetic CdMnSe. Transmission electron microscopy image shows that QDs are formed within the CdSe and CdMnSe layers, and they are vertically correlated in the system. The strong interband ground state transition was observed in magneto-photoluminescence (PL) experiments. In contrast to a typical behavior for many low-dimensional systems involving diluted magnetic semiconductors (DMSs), where PL signal dramatically increases when an external magnetic field is applied, we have observed a significant decrease of the PL intensity as a function of magnetic field in the double-layer structures where the alternating QD layers contain the DMS and non-DMS QDs. We attribute such effect to carrier transfer from non-magnetic CdSe dots to magnetic CdMnSe dots due to the large Zeeman shift of the band edges of DMS QDs in magnetic field. Since the band alignment of QD structure strongly depends on the spin states of system, we performed polarization-selective PL measurement to identify spin-dependent carrier tunneling in this coupled system.  相似文献   

12.
李学超  王安民  王兆亮  杨阳 《中国物理 B》2012,21(8):87303-087303
The second-harmonic generation(SHG) coefficient in an asymmetric quantum dot(QD) with a static magnetic field is theoretically investigated.Within the framework of the effective-mass approximation,we obtain the confined wave functions and energies of electrons in the QD.We also obtain the SHG coefficient by the compact-density-matrix approach and the iterative method.The numerical results for the typical GaAs/AlGaAs QD show that the SHG coefficient depends strongly on the magnitude of magnetic field,parameters of the asymmetric potential and the radius of the QD.The resonant peak shifts with the magnetic field or the radius of the QD changing.  相似文献   

13.
秦猛  田东平 《中国物理 C》2009,33(4):249-251
This paper investigates the bipartite entanglement of a two-qubit Heisenberg XXZ chain under an inhomogeneous magnetic field. By the concept of negativity, we find that the inhomogeneity of the magnetic field may induce entanglement and the critical magnetic field is independent of Jz. We also find that the entanglement is symmetric with respect to a zero magnetic field. The anisotropy parameter Jz may enhance the entanglement.  相似文献   

14.
15.
Quantum correlation dynamics between two identical and spatially separated atoms in free space is investigated by the use of concurrence C and quantum discord (QD). The behaviors of QD differs in many unexpected ways from the entanglement in this system. Firstly, it shows the situations which the concurrence and QD can behave very differently with a “sudden birth” phenomenon of the former but not of the latter, and QD is only oscillating decays with time and the interqubit distance. We also verify the cases which QD is always greater than the concurrence and the region where the concurrence is vanished but with nonzero values for QD. Meanwhile an unexpected situation which the concurrence is greater than QD under the initial state |eg〉 is analyzed. It is revealed that the quantum correlation based only on QD is expected to be more robust than entanglement which is not suitable for all the initial states under the decoherence environment. Then, by introducing the incoherent pumping, we also study the different properties of the steady-state entanglement and QD about this atomic subsystem. It is shown that the incoherent pumping can overcome the decay of the atoms and the influences about the interqubit distance r 12/λ on the steady-state correlation can make the decay of the concurrence obviously quicker than QD, the life of the steady-state QD is evidently larger than the steady-state entanglement.  相似文献   

16.
We develop a variational many-body approach within a second quantized formulation for a few-electron system in a parabolic two-dimensional quantum dot (QD). By way of application, the nature of the ground state of a two-electron system in a parabolic QD in a broad range of magnetic fields is theoretically investigated. Various phase transitions on the basis of the resulting analytical expressions for energy of the system have been investigated: First, the well-known transition from a maximum density droplet to a Wigner phase in a magnetic field is obtained, provided that the QD is in conditions of weak confinement. Furthermore, in the case of relatively strong QD confinement and weak magnetic fields, a rotationally symmetric spin-singlet state is the ground state of the system. However, in a strong magnetic field and for the same QD confinement, a broken-symmetry spin-singlet state appears to be energetically favored over the symmetric spin-singlet state. A first investigation of such a broken-symmetry spin-singlet phase in a QD in a magnetic field is shown to be an important application of the proposed technique. The text was submitted by the authors in English.  相似文献   

17.
This paper investigates the bipartite entanglement of a two-qubit Heisenberg XXZ chain under an inhomogeneous magnetic field. By the concept of negativity, we find that the inhomogeneity of the magnetic field may induce entanglement and the critical magnetic field is independent of Jz. We also find that the entanglement is symmetric with respect to a zero magnetic field. The anisotropy parameter Jz may enhance the entanglement.  相似文献   

18.
In this paper the entanglement and the quantum discord (QD) dynamics of two cavities interacting with a common independent reservoir are investigated. Remarkably, it has been proved that the entanglement between two cavities can be transferred to one of the cavities and the reservoir with time evolution. Compared with the dynamics of entanglement, the QD has the similar behavior. It is found that the cavity damping rate can stabilize the entanglement and quantum discord between the cavity and reservoir. We also explore the monogamy of the entanglement and the QD during the interaction of quantum system.  相似文献   

19.
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement, is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature, different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.  相似文献   

20.
The distillation of the triplet Greenberger-Horne-Zeilinger (GHZ) state is demonstrated by using the entanglement concentrating process for the partially electron-spin-entangled systems. We designate an entanglement concentration protocol (ECP) in the quantum-dot (QD) and micro-cavity coupled systems based on the post-selection, from which the partially entangled state can be concentrated with an aid of the ancillary QD and single photon. This protocol can be repeated several rounds to get an optimal success probability. With the current technology, the maximally entangled electron spins can be achieved in the GHZ states after performing some suitable unitary operation locally for the long-distance quantum communications. The advantage is that during the whole process only the single photon needs to pass through the micro-cavity which increases the total success probability even if the cavity is imperfect in implementations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号