首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low energy electron diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy and line of sight mass spectrometry have been used to study the adsorption and desorption of dimethyldisulfide (DMDS) on Au(111). At 300 K adsorption is dissociative, forming a chemisorbed adlayer of methylthiolate with a 1/3 ML, (sq rt 3 x sq rt 3)R30 degrees, structure. At 100 K adsorption is molecular, with dissociation to form the 1/3 ML (sq rt 3 x sq rt 3)R30 degrees methylthiolate structure occurring at 138-160 K. A physisorbed DMDS layer, with a coverage of 1/6 ML of DMDS, forms on top of the (sq rt 3 x sq rt 3)R30 degrees chemisorbed MT surface for T < or = 180 K, with multilayers forming for T < or = 150 K. In temperature programmed desorption, multilayers of DMDS desorbed with zero order kinetics and an activation energy of 41 kJ mol(-1); the physisorbed layer desorbed with first order kinetics, exhibiting repulsive lateral interactions with an activation energy which varied from 63 kJ mol(-1) (theta = 0) to 51 kJ mol(-1) (theta = 1); the chemisorbed methylthiolate layer desorbed associatively as DMDS via the physisorbed layer, the activation energy for the reaction, 2 methylthiolate --> physisorbed DMDS, exhibiting repulsive lateral interactions with an activation energy which varied from 65 kJ mol(-1) (theta = 0) to 61 kJ mol(-1) (theta = 1). The physisorbed disulfide layer explains the pre-cursor state adsorption kinetics observed in sticking probability measurement, while its relatively facile formation provides a mechanism by which thiolate self-assembled monolayers can become mobile at room temperature.  相似文献   

2.
The CO exchange on cis-[M(CO)2X2]- with M = Ir (X = Cl, la; X = Br, 1b; X = I, 1c) and M = Rh (X = Cl, 2a; X = Br, 2b; X = I, 2c) was studied in dichloromethane. The exchange reaction [cis-[M(CO)2X2]- + 2*CO is in equilibrium cis-[M(*CO)2X2]- + 2CO (exchange rate constant: kobs)] was followed as a function of temperature and carbon monoxide concentration (up to 6 MPa) using homemade high gas pressure NMR sapphire tubes. The reaction is first order for both CO and cis-[M(CO)2X2]- concentrations. The second-order rate constant, k2(298) (=kobs)[CO]), the enthalpy, deltaH*, and the entropy of activation, deltaS*, obtained for the six complexes are respectively as follows: la, (1.08 +/- 0.01) x 10(3) L mol(-1) s(-1), 15.37 +/- 0.3 kJ mol(-1), -135.3 +/- 1 J mol(-1) K(-1); 1b, (12.7 +/- 0.2) x 10(3) L mol(-1) s(-1), 13.26 +/- 0.5 kJ mol(-1), -121.9 +/- 2 J mol(-1) K(-1); 1c, (98.9 +/- 1.4) x 10(3) L mol(-1) s(-1), 12.50 +/- 0.6 kJ mol(-1), -107.4 +/- 2 J mol(-1) K(-1); 2a, (1.62 +/- 0.02) x 10(3) L mol(-1) s(-1), 17.47 +/- 0.4 kJ mol(-1), -124.9 +/- 1 J mol(-1) K(-1); 2b, (24.8 +/- 0.2) x 10(3) L mol(-1) s(-1), 11.35 +/- 0.4 kJ mol(-1), -122.7 +/- 1 J mol(-1) K(-1); 2c, (850 +/- 120) x 10(3) L mol(-1), s(-1), 9.87 +/- 0.8 kJ mol(-1), -98.3 +/- 4 J mol(-1) K(-1). For complexes la and 2a, the volumes of activation were measured and are -20.9 +/- 1.2 cm3 mol(-1) (332.0 K) and -17.2 +/- 1.0 cm3 mol(-1) (330.8 K), respectively. The second-order kinetics and the large negative values of the entropies and volumes of activation point to a limiting associative, A, exchange mechanism. The reactivity of CO exchange follows the increasing trans effect of the halogens (Cl < Br < I), and this is observed on both metal centers. For the same halogen, the rhodium complex is more reactive than the iridium complex. This reactivity difference between rhodium and iridium is less marked for chloride (1.5: 1) than for iodide (8.6:1) at 298 K.  相似文献   

3.
The formation constants of UO2SO4 (aq), UO2(SO4)2(2-), and UO2(SO4)3(4-) were measured in aqueous solutions from 10 to 75 degrees C by time-resolved laser-induced fluorescence spectroscopy (TRLFS). A constant enthalpy of reaction approach was satisfactorily used to fit the thermodynamic parameters of stepwise complex formation reactions in a 0.1 M Na(+) ionic medium: log 10 K 1(25 degrees C) = 2.45 +/- 0.05, Delta r H1 = 29.1 +/- 4.0 kJ x mol(-1), log10 K2(25 degrees C) = 1.03 +/- 0.04, and Delta r H2 = 16.6 +/- 4.5 kJ x mol(-1). While the enthalpy of the UO2(SO4)2(2-) formation reaction is in good agreement with calorimetric data, that for UO2SO4 (aq) is higher than other values by a few kilojoules per mole. Incomplete knowledge of the speciation may have led to an underestimation of Delta r H1 in previous calorimetric studies. In fact, one of the published calorimetric determinations of Delta r H1 is here supported by the TRLFS results only when reinterpreted with a more correct equilibrium constant value, which shifts the fitted Delta r H1 value up by 9 kJ x mol(-1). UO2(SO 4) 3 (4-) was evidenced in a 3 M Na (+) ionic medium: log10 K3(25 degrees C) = 0.76 +/- 0.20 and Delta r H3 = 11 +/- 8 kJ x mol(-1) were obtained. The fluorescence features of the sulfate complexes were observed to depend on the ionic conditions. Changes in the coordination mode (mono- and bidentate) of the sulfate ligands may explain these observations, in line with recent structural data.  相似文献   

4.
The montmorillonite has been subjected to modification through ion-exchange reaction by tetrabutylammonium bromide (TBAB). The modified sample was studied by X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) methods. The basal spacing of modified montmorillonite was determined as 14.40 A. The IR spectra of modified montmorillonite showed CH vibrations. The characterization of tetrabutylammonium montmorillonite (TBAM) and the adsorption of p-chlorophenol (p-CP) on organomontmorillonite was studied as a function of the solution concentration and temperature. The observed adsorption rates were found to fit to the pseudo-second-order kinetics. The rate constants were calculated for temperatures ranging between 25.0-35.0 degrees C at constant concentration. The adsorption energy, E, and adsorption capacity, (q(m)), for phenolic compounds adsorbing on organomontmorillonite were estimated using the Dubinin-Radushkevich (D-R) equation. Thermodynamic parameters (delta g(a) = -11.063 and -11.802 kJ/mol, delta h(a) = -30.032 and -30.789 kJ/mol, delta s(a) = -0.0636 and -0.0637 kJ/mol K for 298 and 308 K, respectively) were calculated by a new approximation from the adsorption isotherms of p-CP on organomontmorillonite. These isotherms were modeled according to Freundlich and Dubinin-Radushkevich adsorption isotherms, through which the first-order and second-order coefficients (K(1ads) = 0.0152 and 0.0127 micromol/g min, K(2ads) = 0.0130 and 0.0108 L/min micromol, respectively) were obtained at 298 and 308 K.  相似文献   

5.
A new family of cyanide-based spin-crossover polymers with the general formula {Fe(5-Br-pmd)z[M(CN)x]y} [M=AgI (1), AuI (2), NiII (3), PdII (4), PtII (5); 5-Br-pmd=5-bromopyrimidine; z=1 or 2, x=2 or 4, and y=2 or 1] have been synthesized and characterized using single-crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), magnetic susceptibility measurements, and differential scanning calorimetry (DSC). At 293 K, compound 1 presents the monoclinic space group C2/c, whereas at 120 K, it changes to the monoclinic space group P21/c. At 293 K, the crystal structure of 1 displays an uninodal three-dimensional network whose nodes, constituted of FeII, lie at the inversion center of an elongated octahedron. The equatorial bond lengths are defined by the N atoms of four [AgI(CN)2]- groups belonging to two crystallographically nonequivalent AgI atoms, Ag(1) and Ag(2). They are shorter than those of the axial positions occupied by the N atoms of the 5-Br-pmd ligands. The Fe-N average bond length of 2.1657(7) A is consistent with a high-spin (HS) state for the FeII ions. At 120 K, the crystal structure changes refer mainly to the FeII environment. There are two crystallographically independent FeII ions at this temperature, Fe(1) and Fe(2), which adopt the HS and low-spin (LS) states, respectively. The average Fe-N bond length for Fe(1) [2.174(5) A] and Fe(2) [1.955(5) A] agrees well with the reported magnetic data at this temperature. The spin transition of the FeII ions labeled as Fe(1) is found to be centered at Tc downward arrow=149 K and Tc upward arrow=167 K and accompanied by a drastic change of color from orange (HS) to red (LS). Magnetic susceptibility measurements under applied hydrostatic pressure performed on 1 have shown a linear displacement of the transition to higher temperatures while the hysteresis width remains unaltered in the interval of pressures of 105 Pa to 0.34 GPa. A further increase of the pressure induces the spin transition in the Fe(2) ions, which is completely accomplished at 1.12 GPa (T1/2=162 K). Compounds 1 and 2 are isostructural, but 2 does not exhibit spin-transition properties; the FeII centers remain in the HS state in the temperature range investigated, 5-300 K. Compounds 3-5 are not similar or isostructural with 1. A two-dimensional structure for 3-5 has been proposed on the basis of analytical data and the XRPD patterns. Compounds 3-5 undergo first-order spin transition where the critical temperatures for the cooling (Tc downward arrow) and warming (Tc upward arrow) modes are 170 and 180 K (3), 204 and 214 K (4), and 197 and 223 K (5), respectively. It is worth mentioning the color change from yellow to orange observed in 3-5 upon spin transition. The thermodynamic parameters associated with the spin transition estimated from DSC measurements are DeltaH=6 kJ mol(-1) (1), 11 kJ mol(-1) (3), 16 kJ mol(-1) (4), and 16 kJ mol(-1) (5) and DeltaS=38 J K(-1) mol(-1) (1), 62 J K(-1) mol(-1) (3), 76 J K-1 mol(-1) (4), and 81 J K(-1) mol(-1) (5).  相似文献   

6.
The intriguing hysteretic adsorption-desorption behavior of certain microporous metal-organic frameworks (MMOFs) has received considerable attention and is often associated with a gate-opening (GO) effect. Here, the hysteretic adsorption of N(2) and Ar to Zn(2)(bpdc)(2)(bpee) (bpdc = 4,4'-biphenyldicarboxylate; bpee = 1,2-bipyridylethene) shows a pronounced effect of allowed experimental time at 77 and 87 K. When the time allowed is on the order of minutes for N(2) at 77 K, no adsorption is observed, whereas times in excess of 60 h is required to achieve appreciable adsorption up to a limiting total coverage. Given sufficient time, the total uptake for N(2) and Ar converged at similar reduced temperatures, but the adsorption of Ar was significantly more rapid than that of N(2), an observation that can be described by activated configurational diffusion. N(2) and Ar both exhibited discontinuous stepped adsorption isotherms with significant hysteresis, features that were dependent upon the allowed time. The uptake of H(2) at 77 K was greater than for both N(2) and Ar but showed no discontinuity in the isotherm, and hysteretic effects were much less pronounced. N(2) and Ar adsorption data can be described by an activated diffusion process, with characteristic times leading to activation energies of 6.7 and 12 kJ/mol. Fits of H(2) adsorption data led to activation energies in the range 2-7 kJ/mol at low coverage and nonactivated diffusion at higher coverage. An alternate concentration-dependent diffusion model is presented to describe the stepwise adsorption behavior, which is observed for N(2) and Ar but not for H(2). Equilibrium is approached very slowly for adsorption to molecularly sized pores at low temperature, and structural change (gate opening), although it may occur, is not required to explain the observations.  相似文献   

7.
The heat of adsorption of naphthalene on Pt(111) at 300 K was measured with single-crystal adsorption calorimetry. The heat of adsorption on the ideal, defect-free surface is estimated to be (300 - 34 - 199(2)) kJ/mol. From this, a C-Pt bond energy for aromatic hydrocarbons on Pt(111) of approximately 30 kJ/mol is estimated, consistent with earlier results for benzene on Pt(111). There is higher heat of adsorption at very low coverage, attributed to step sites where the adsorption heat is >/=330 kJ/mol. Saturation coverage, = 1 ML, corresponds to 1.55 x 10(14) molecules/cm(2). Sticking probability measurements of naphthalene on Pt(111) give a high initial value of 1.0 and a Kisliuk-type coverage dependence that implies precursor-mediated sticking. The ratio of the hopping rate to the desorption rate of this precursor is approximately 51. Naphthalene adsorbs transiently on top of chemisorbed naphthalene molecules with a heat of adsorption of 83-87 kJ/mol.  相似文献   

8.
S4(AsF6)2.AsF3 was prepared by the reaction of sulfur with arsenic pentafluroide in liquid AsF3 (quantitatively) and in anhydrous HF in the presence of trace amounts of bromine. A single-crystal X-ray structure of the compound has been determined: monoclinic, space group P2(1)/c, Z = 4, a = 7.886(1) A, b = 9.261(2) A, c = 19.191(3) A, beta = 92.82(1) degrees, V = 1399.9(4) A3, T = 293 K, R1 = 0.052 for 1563 reflections (I > 2 sigma (I) 1580 total and 235 parameters). We report a term-by-term calculation of the lattice potential energy of this salt and also use our generalized equation, which estimates lattice energies to assist in probing the homopolyatomic cation thermochemistry in the solid and the gaseous states. We find S4(AsF6)2.AsF3 to be more stable (delta fH degree [S4(AsF6)2.AsF3,c] approximately -4050 +/- 105 kJ/mol) than either the unsolvated S4(AsF6)2 (delta fH degree [S4(AsF6)2,c] approximately -3104 +/- 117 kJ/mol) by 144 kJ/mol or two moles of S2AsF6 (c) and AsF3 (1) by 362 kJ/mol. The greater stability of the S(4)2+ salt arises because of the greater lattice potential energy of the 1:2 solvated salt (1734 kJ/mol) relative to twice that of the 1:1 salt (2 x 541 = 1082 kJ/mol). The relative lattice stabilization enthalpies of M(4)2+ ions relative to two M2+ ions (i.e., in M4(AsF6)2 (c) with respect to two M2AsF6 (c) (M = S, Se, and Te)) are found to be 218, 289, and 365 kJ/mol, respectively. Evaluation of the thermodynamic data implies that appropriate presently available anions are unlikely to stabilize M2+ in the solid phase. A revised value for delta fH degree [Se4(AsF6)2,c] = -3182 +/- 106 kJ/mol is proposed based on estimates of the lattice energy of Se4(AsF6)2 (c) and a previously calculated gasphase dimerization energy of 2Se2+ to Se(4)2+.  相似文献   

9.
The Pt(111) electrode is modified by an overlayer of C6H6 (ads) upon its cycling in the 0.05-0.80 V range in aq H2SO4 + 1 mM C6H6. The C6H6 (ads) overlayer significantly changes the underpotential-deposited H (H(UPD)) and anion adsorption, and cyclic-voltammetry (CV) profiles show a sharp cathodic peak and an asymmetric anodic one in the 0.05-0.80 V potential range. The C6H6 (ads) layer blocks the (bi)sulfate adsorption but facilitates the adsorption of one monolayer of H(UPD). Cycling of the benzene-modified Pt(111) in benzene-free aq 0.05 H2SO4 from 0.05 to 0.80 V results in a partial desorption of C6H6 (ads) and in a partial recovery of the CV profile characteristic of an unmodified Pt(111). The peak potential of the cathodic and anodic feature is independent of the scan rate, s (10 < or = s < or = 100 mV s(-1)), and the peak current density increases linearly with an increase of the scan rate. Temperature variation modifies the peak potential and current density but does not affect the charge density of the cathodic or anodic feature. Temperature-dependent studies allow us to determine the thermodynamic state function for the H(UPD) adsorption and desorption. Delta G degrees(ads)(H(UPD))assumes values from -4 to -12 kJ mol(-1), while has values from 9 to 14 kJ mol(-1). The values of delta Delta G degrees (delta Delta G degrees = delat Delta G degrees(ads) + delta Delta D degrees(des)) decrease almost linearly from 6 kJ mol(-1) at theta(H(UPD) --> 0 to 0 kJ mol(-1) at theta(H(UPD) --> 1. The nonzero values of delta Delta G degrees testify that the adsorbing and desorbing H(UPD) adatoms interact with an energetically different substrate. The lateral interactions changed from repulsive (omega = 29 kJ mol(-1) at theta(H(UPD) --> 0) to attractive (omega = -28 kJ mol(-1) at theta(H(UPD) --> 1) as the H(UPD) coverage increases. The values of delta S degrees(ads)(H(UPD)) increase from 19 to 56 J K(-1) mol(-1), while those of delta S degrees(des)(H(UPD)) decrease from 45 to -30 J K(-1) mol(-1) with an increase of H(UPD) coverage. The values of delta H degrees(des)(H(UPD)) and delta H degrees(des)(H(UPD)) vary from 0 to 27 kJ mol(-1). The Pt(111)-H(UPD) surface bond energy at the benzene-modified Pt(111) electrode falls in the 191-218 kJ mol(-1) range and is weaker than in the case of the unmodified Pt(111) electrode in the same electrolyte.  相似文献   

10.
The effect of temperature on the voltammetric OH adsorption on Pt(111) and Pt(100) electrodes in perchloric acid media has been studied. From a thermodynamic analysis based on a generalized adsorption isotherm, DeltaG degrees , DeltaH degrees , and DeltaS degrees values for the adsorption of OH have been determined. On Pt(111), the adsorption enthalpy ranges between -265 and -235 kJ mol(-1), becoming less exothermic as the OH coverage increases. These values are in reasonable agreement with experimental data and calculated values for the same reaction in gas phase. The adsorption entropy for OH adsorption on Pt(111) ranges from -200 J mol(-1) K(-1) (low coverage) to -110 J mol(-1) K(-1) (high coverage). On the other hand, the enthalpy and entropy of hydroxyl adsorption on Pt(100) are less sensitive to coverage variations, with values ca. DeltaH degrees = -280 kJ mol(-1) and DeltaS degrees = -180 J mol(-1) K(-1). The different dependence of DeltaS degrees with coverage on both electrode surfaces stresses the important effect of the substrate symmetry on the mobility of adsorbed OH species within the water network directly attached to the metal surface.  相似文献   

11.
The constants (K(s)) and enthalpies (DeltaH(s)) for stacking interactions between purine nucleoside monophosphates were determined by calorimetry; the values thus obtained were guanosine as follows: K(s) = 2.1 +/- 0.3 M(-)(1) and DeltaH(s) = -41.8 +/- 0.8 kJ/mol for adenosine 5'-monophosphate (5'AMP); K(s) = 1.5 +/- 0.3 M(-1) and DeltaH(s) = -42.0 +/- 1.5 kJ/mol for guanosine 5'-monophosphate (5'GMP); and K(s) = 1.0 +/- 0.2 M(-1) and DeltaH(s) = -42.3 +/- 1.1 kJ/mol for inosine 5'-monophosphate (5'IMP). The interaction of nickel(II) with purine nucleoside monophosphates was studied using potentiometric and calorimetric methods, with 0.1 M tetramethylammonium bromide as the background electrolyte, at 25 degrees C. The presence in solution of the complexes [Ni(5'GMP)(2)](2)(-) and [Ni(5'IMP)(2)](2)(-) was observed. The thermodynamic parameters obtained were log K(ML) = 3.04 +/- 0.02, log K(ML2) = 2.33 +/- 0.02, DeltaH(ML) = -18.4 +/- 0.9 kJ/mol and DeltaH(ML2) = -9.0 +/- 1.9 kJ/mol for 5'GMP; and log K(ML) = 2.91 +/- 0.01, log K(ML2) = 1.92 +/- 0.01, DeltaH(ML) = -16.2 +/- 0.9 kJ/mol and DeltaH(ML2) = -0.1 +/- 2.3 kJ/mol for 5'IMP. The relationships between complex enthalpies and the degree of macrochelation, as well as the stacking interaction between purine bases in the complexes are discussed in relation to previously reported calorimetric data.  相似文献   

12.
D301大孔树脂吸附钒(V)的性能研究   总被引:3,自引:0,他引:3  
研究了D301大孔树脂对钒的吸附性能.结果表明,pH值对D301树脂吸附钒的影响很大,与钒在溶液中的赋存状态有关,且在pH=2时吸附效果最好:测得吸附热力学参数分别为:△H=8.97kJ/mol,△G_(313)=-5.69kJ/mol,△G_(303)=-5.2kJ/mol,△G_(293)=-4.9kJ/mol,△S=46.84J/mol·K.等温吸附服从Freundlich经验式;考察了溶液浓度、搅拌速率对交换过程的影响,并对实验数据运用相关理论模型进行拟合,结果显示钒(V)在D301树脂上吸附交换过程控制步骤为颗粒扩散控制,反应级数n为0.2391.  相似文献   

13.
Alkylamines (RCH(2)NH(2), R = H, CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7)) have been investigated by dissociative photoionization by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). The 0 K dissociation limits (9.754 +/- 0.008, 9.721 +/- 0.008, 9.702 +/- 0.012, and 9.668 +/- 0.012 eV for R = CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7), respectively) have been determined by preparing energy-selected ions and collecting the fractional abundances of parent and daughter ions. All alkylamine cations produce the methylenimmonium ion, CH(2)NH(2)+, and the corresponding alkyl free radical. Two isodesmic reaction networks have also been constructed. The first one consists of the alkylamine parent molecules, and the other of the alkyl radical photofragments. Reaction heats within the isodesmic networks have been calculated at the CBS-APNO and W1U levels of theory. The two networks are connected by the TPEPICO dissociation energies. The heats of formation of the amines and the alkyl free radicals are then obtained by a modified least-squares fit to minimize the discrepancy between the TPEPICO and the ab initio values. The analysis of the fit reveals that the previous experimental heats of formation are largely accurate, but certain revisions are suggested. Thus, Delta(f)Ho(298K)[CH(3)NH(2)(g)] = -21.8 +/- 1.5 kJ mol-1, Delta(f)Ho(298K)[C(2)H(5)NH(2)(g)] = -50.1 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)NH(2)(g)] = -70.8 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)*] = 101.3 +/- 1 kJ mol(-1), and Delta(f)Ho(298K)[i-C(3)H(7)*] = 88.5 +/- 1 kJ mol(-1). The TPEPICO and the ab initio results for butylamine do not agree within 1 kJ mol-1; therefore, no new heat of formation is proposed for butylamine. It is nevertheless indicated that the previous experimental heats of formation of methylamine, propylamine, butylamine, and isobutylamine may have been systematically underestimated. On the other hand, the error in the ethyl radical heat of formation is found to be overestimated and can be decreased to +/- 1 kJ mol(-1); thus, Delta(f)Ho(298K)[C(2)H(5).] = 120.7 +/- 1 kJ mol(-1). On the basis of the data analysis, the heat of formation of the methylenimmonium ion is confirmed to be Delta(f)Ho(298K)[CH(2)NH(2)+] = 750.3 +/- 1 kJ mol(-1).  相似文献   

14.
The standard molar enthalpies of formation of chloro-, bromo-, and iodoacetic acids in the crystalline state, at 298.15 K, were determined as deltafH(o)m(C2H3O2Cl, cr alpha)=-(509.74+/- 0.49) kJ x mol(-1), deltafH(o)m(C2H3O2Br, cr I)-(466.98 +/- 1.08) kJ x mol(-1), and deltafH(o)m (C2H3O2I, cr)=-(415.44 +/- 1.53) kJ x mol(-1), respectively, by rotating-bomb combustion calorimetry. Vapor pressure versus temperature measurements by the Knudsen effusion method led to deltasubH(o)m(C2H3O2Cl)=(82.19 +/- 0.92) kJ x mol(-1), deltasubH(o)m(C2H3O2Br)=(83.50 +/- 2.95) kJ x mol(-1), and deltasubH(o)m-(C2H3O2I) = (86.47 +/- 1.02) kJ x mol(-1), at 298.15 K. From the obtained deltafH(o)m(cr) and deltasubH(o)m values it was possible to derive deltafH(o)m(C2H3O2Cl, g)=-(427.55 +/- 1.04) kJ x mol(-1), deltafH(o)m (C2H3O2Br, g)=-(383.48 +/- 3.14) kJ x mol(-1), and deltafH(o)m(C2H3O2I, g)=-(328.97 +/- 1.84) kJ x mol(-1). These data, taken with a published value of the enthalpy of formation of acetic acid, and the enthalpy of formation of the carboxymethyl radical, deltafH(o)m(CH2COOH, g)=-(238 +/- 2) kJ x mol(-1), obtained from density functional theory calculations, led to DHo(H-CH2COOH)=(412.8 +/- 3.2) kJ x mol(-1), DHo(Cl-CH2COOH)=(310.9 +/- 2.2) kJ x mol(-1), DHo(Br-CH2COOH)=(257.4 +/- 3.7) kJ x mol(-1), and DHo(I-CH2COOH)=(197.8 +/- 2.7) kJ x mol(-1). A discussion of the C-X bonding energetics in XCH2COOH, CH3X, C2H5X, C2H3X, and C6H5X (X=H, Cl, Br, I) compounds is presented.  相似文献   

15.
Controlled-potential electrochemical oxidation of cis-[Ru(ROCS2)2(PPh3)2] (R = Et, iPr) yielded corresponding Ru(III) complexes, and the crystal structures of cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2](PF6) were determined. Both pairs of complexes exhibited almost identical coordination structures. The Ru-P distances in trans-[Ru(III)(ROCS2)2(PPh3)2](PF6) [2.436(3)-2.443(3) A] were significantly longer than those in cis-[Ru(II)(ROCS2)2(PPh3)2] [2.306(1)-2.315(2) A]: the smaller ionic radius of Ru(III) than that of Ru(II) stabilizes the trans conformation for the Ru(III) complex due to the steric requirement of bulky phosphine ligands while mutual trans influence by the phosphine ligands induces significant elongation of the Ru(III)-P bonds. Cyclic voltammograms of the cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2]+ complexes in dichloromethane solution exhibited typical dual redox signals corresponding to the cis-[Ru(ROCS2)2(PPh3)2](+/0) (ca. +0.15 and +0.10 V vs ferrocenium/ferrocene couple for R = Et and iPr, respectively) and to trans-[Ru(ROCS2)2(PPh3)2](+/0) (-0.05 and -0.15 V vs ferrocenium/ferrocene for R = Et and iPr, respectively) couples. Analyses on the basis of the Nicholson and Shain's method revealed that the thermal disappearance rate of transient trans-[Ru(ROCS2)2(PPh3)2] was dependent on the concentration of PPh3 in the bulk: the rate constant for the intramolecular isomerization reaction of trans-[Ru(iPrOCS2)2(PPh3)2] was determined as 0.338 +/- 0.004 s(-1) at 298.3 K (deltaH* = 41.8 +/- 1.5 kJ mol(-1) and deltaS* = -114 +/- 7 J mol(-1) K(-1)), while the dissociation rate constant of coordinated PPh3 from the trans-[Ru(iPrOCS2)2(PPh3)2] species was estimated as 0.113 +/- 0.008 s(-1) at 298.3 K (deltaH* = 97.6 +/- 0.8 kJ mol(-1) and deltaS* = 64 +/- 3 J mol(-1) K(-1)), by monitoring the EC reaction (electrode reaction followed by chemical processes) at different concentrations of PPh3 in the bulk. It was found that the trans to cis isomerization reaction takes place via the partial dissociation of iPrOCS2(-) from Ru(II), contrary to the previous claim that it takes place by the twist mechanism.  相似文献   

16.
The sorption of Hg(II) in the presence of sodium thiocyanate solution onto polyurethane (PUR) foam, an excellent sorbent, has been investigated in detail. Maximum sorption of Hg(II) is achieved from 0.1 M hydrochloric acid solution containing 7.5x10(-2) M sodium thiocyanate in 5 min. The sorption data followed both Freundlich and Langmuir adsorption isotherms. The Freundlich constants 1/n and sorption capacity, C(m), are evaluated to be 0.44+/-0.02 and (3.86+/-0.89)x10(-3) mol g(-1). The saturation capacity and adsorption constant derived from Langmuir isotherm are (6.88+/-0.28)x10(-5) mol g(-1) and (5.6+/-0.37)x10(4) dm(3) mol(-1) respectively. The mean free energy (E) of Hg(II)-SCN sorption onto PUR foam computed from D-R isotherm is 12.4+/-0.3 kJ mol(-1) indicating ion-exchange type mechanism of chemisorption. The variation of sorption with temperature yields thermodynamic parameters of DeltaH=-30.7+/-1.2 kJ mol(-1), DeltaS=-70.1+/-4.1 J mol(-1) K(-1) and DeltaG=-9.86+/-0.77 kJ mol(-1) at 298 K. The negative value of enthalpy and free energy reflects the exothermic and spontaneous nature of sorption. On the basis of the sorption data, sorption mechanism has been proposed.  相似文献   

17.
High-level ab initio calculations were carried out on a series of K+.X cluster ions (X = O, O2, N2, CO2, H2O) and X.K+.Y ions. Rice-Ramsberger-Kassel-Markus theory was then used to estimate the rate coefficients for a series of recombination and ligand-switching reactions that govern the ion-molecule chemistry of K+ in the upper mesosphere and lower thermosphere. These rate coefficients were then included in an atmospheric model of potassium chemistry. The important result is that K+ forms weakly bound clusters with N2, O2, and O (the major atmospheric species), with binding energies between 10 and 22 kJ mol(-1). Even under atmospheric conditions (200 K and 10(-3) Torr), these cluster dissociate in less than 1 s. This prevents the formation by ligand-switching of the more stable CO2 and H2O clusters, which could then undergo dissociative recombination with electrons to produce K. The result is that K+ ions have a much longer lifetime against neutralization in the upper atmosphere than other metallic ions such as Na+ and Fe+.  相似文献   

18.
A rational strategy has been used to immobilize open metal sites in ultramicroporosity for stronger binding of multiple H 2 molecules per unsaturated metal site for H 2 storage applications. The synthesis and structure of a mixed zinc/copper metal-organic framework material Zn 3(BDC) 3[Cu(Pyen)] .(DMF) 5(H 2O) 5 (H 2BDC = 1,4 benzenedicarboxylic acid and PyenH 2 = 5-methyl-4-oxo-1,4-dihydro-pyridine-3-carbaldehyde) is reported. Desolvation provides a bimodal porous structure Zn 3(BDC) 3[Cu(Pyen)] (M'MOF 1) with narrow porosity (<0.56 nm) and an array of pores in the bc crystallographic plane where the adsorbate-adsorbent interactions are maximized by both the presence of open copper centers and overlap of the potential energy fields from pore walls. The H 2 and D 2 adsorption isotherms for M'MOF 1 at 77.3 and 87.3 K were reversible with virtually no hysteresis. Methods for determination of the isosteric enthalpies of H 2 and D 2 adsorption were compared. A virial model gave the best agreement (average deviation <1 standard deviation) with the isotherm data. This was used in conjunction with the van't Hoff isochore giving isosteric enthalpies at zero surface coverage of 12.29 +/- 0.53 and 12.44 +/- 0.50 kJ mol (-1) for H 2 and D 2 adsorption, respectively. This is the highest value so far observed for hydrogen adsorption on a porous material. The enthalpy of adsorption, decreases with increasing amount adsorbed to 9.5 kJ mol (-1) at approximately 1.9 mmol g (-1) (2 H 2 or D 2 molecules per Cu corresponding to adsorption on both sides of planar Cu open centers) and is virtually unchanged in the range 1.9-3.6 mmol g (-1). Virial analysis of isotherms at 87.3 K is also consistent with two H 2 or D 2 molecules being bound to each open Cu center. The adsorption kinetics follow a double exponential model, corresponding to diffusion along two types of pores, a slow component with high activation energy (13.35 +/- 0.59 kJ mol (-1)) for the narrow pores and a faster component with low activation energy (8.56 +/- 0.41 kJ mol (-1)). The D 2 adsorption kinetic constants for both components were significantly faster than the corresponding H 2 kinetics for specific pressure increments and had slightly lower activation energies than the corresponding values for H 2 adsorption. The kD 2/ kH 2 ratio for the slow component was 1.62 +/- 0.07, while the fast component was 1.38 +/- 0.04 at 77.3 K, and the corresponding ratios were smaller at 87.3 K. These observations of kinetic isotope quantum molecular sieving in porous materials are due to the larger zero-point energy for the lighter H 2, resulting in slower adsorption kinetics compared with the heavier D 2. The results show that a combination of open metal centers and confinement in ultramicroporosity leads to a high enthalpy for H 2 adsorption over a wide range of surface coverage and quantum effects influence diffusion of H 2 and D 2 in pores in M'MOF 1.  相似文献   

19.
Threshold photoelectron-photoion coincidence spectroscopy (TPEPICO) has been used to study the dissociation kinetics and thermochemistry of Me(4)Si, Me(6)Si(2), and Me(3)SiX, (X = Br, I) molecules. Accurate 0 K dissociative photoionization onsets for these species have been measured from the breakdown diagram and the ion time-of-flight distribution, both of them analyzed and simulated in terms of the statistical RRKM theory and DFT calculations. The average enthalpy of formation of trimethylsilyl ion, Delta fH(o)298K(Me(3)Si(+)) = 617.3 +/- 2.3 kJ/mol, has been determined from the measured onsets for methyl loss (10.243 +/- 0.010 eV) from Me(4)Si, and Br and I loss from Me(3)SiBr (10.624 +/- 0.010 eV) and Me(3)SiI (9.773 +/- 0.015 eV), respectively. The methyl loss onsets for the trimethyl halo silanes lead to Delta fH(o)298K(Me(2)SiBr(+)) = 590.3 +/- 4.4 kJ/mol and Delta fH(o)298K(Me(5)Si(2)(+)) = 487.6 +/- 6.2 kJ/mol. The dissociative photoionization of Me(3)SiSiMe(3) proceeds by a very slow Si-Si bond breaking step, whose rate constants were measured as a function of the ion internal energy. Extrapolation of this rate constant to the dissociation limit leads to the 0 K dissociation onset (9.670 +/- 0.030 eV). This onset, along with the previously determined trimethylsilyl ion energy, leads to an enthalpy of formation of the trimethylsilyl radical, Delta fH(o)298K(Me(3)Si(*)) = 14.0 +/- 6.6 kJ/mol. In combination with other experimental values, we propose a more accurate average value for Delta fH(o)298K(Me(3)Si(*)) of 14.8 +/- 2.0 kJ/mol. Finally, the bond dissociation enthalpies (DeltaH(298K)) Si-H, Si-C, Si-X (X=Cl, Br, I) and Si-Si are derived and discussed in this study.  相似文献   

20.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号