首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, combinatorial library synthesis for drug discovery begins to migrate from library synthesis solely dictated by chemistry availability to design and synthesis of libraries with more drug-like properties. Lipinski's rule of five has been used to evaluate drug-like properties of individual compound; recently LibProTM, a new computation program has been developed at Pharmacopeia to evaluate durg-like properties of libraries. By using LibPrpTM, chemists at Pharmacopeia are able to obtain information of molecular weight and ClogP distribution of a library, and percentage of library members that violate Lipinski's rule after input structures of synthons for each combinatorial step. Currently, a "virtual library design” approach that is to calculate properties of a library at conceptual phase of the library design has been used to predetermine the value of the library. Also a new computer program used to predict "Absorption” of compounds will also be discussed.  相似文献   

2.
Accurate results for the testing of combinatorial libraries necessitates high purity of the library members. Therefore, combinatorial libraries derived from a combinatorial solution or solid-phase synthesis often require the purification of compounds that do not achieve a certain purity threshold. This study describes that preparative high-performance liquid chromatography (HPLC)-mass spectrometry (MS) is the method of choice for the purification of large arrays of diverse compounds. The adoption of this technology to the workflow of a solution phase combinatorial chemistry laboratory producing more than 20,000 compounds per year is described. Furthermore, the setup and logistics are discussed as well as the purity achievable for large libraries. Efficiency, speed, quality, and universality of preparative HPLC-MS are presented in detail for a library of 140 compounds, including data logistics and downstream processes as well.  相似文献   

3.
液相组合化学   总被引:5,自引:0,他引:5  
许家喜  麻远 《化学通报》2002,65(3):145-152
综述了液相组合化学的研究进展,重点介绍了液相组合合成中的分离纯化方法和合成方法策略,基本分离纯化方法包括利用固相载体协助分离纯化法,相萃取分离纯化法和色谱法,主要合成方法策略有平行合成策略和索引合成策略。  相似文献   

4.
In recent few years combinatorial methodology has been extensively used in material science research. Based on the desired properties of materials, various high throughput synthesizing and screening technologies were developed. These high throughput technologies can increase our speed to more than hundred folds for finding and optimizing materials. One of the most active areas is catalysis. Scientists are developing novel high throughput technologies to screen catalyst libraries to find and optimize new catalysts for chemical industry. In this area die key is combinatorial catalytic reactor design, catalyst library synthesis, and product detection. Systematic technologies for catalyst library synthesis and characterization were developed in our laboratory. In this work, catalyst in situ synthesis, parallel reactor design, and detection methods will be introduced. Combining with the powerful combinatorial methodology, good chemistry design will make our work even more efficient. Hence, as an example of combining combinatorial technologies with chemistry design, a successful catalyst design is also introduced.  相似文献   

5.
In the past 15 years, the chemistry of reversible covalent bond formation (dynamic covalent chemistry (DCC)) has been exploited to engineer networks of interconverting compounds known as dynamic combinatorial libraries (DCLs). Classically, the distribution of library components is governed by their relative free energies, and so, processes that manipulate the free energy landscape of the DCL can influence the distribution of library members. Within the same time frame, the design and implementation of molecules capable of copying themselves--so-called replicators--has emerged from the field of template-directed synthesis. Harnessing the nonlinear kinetics inherent in replicator behavior offers an attractive strategy for amplification of a target structure within a DCL and, hence, engendering high levels of selectivity within that library. The instructional nature of replicating templates also renders the combination of replication and DCC a potential vehicle for developing complex reaction networks; a prerequisite for the development of the emerging field of systems chemistry. This Concept article explores the role of kinetically and thermodynamically controlled processes within different DCC frameworks. The effects of embedding a replicating system within these DCC frameworks is explored and the consequences of the different topologies of the reaction network for amplification and selectivity within DCLs is highlighted.  相似文献   

6.
Virtual screening is increasingly being used in drug discovery programs with a growing number of successful applications. Experimental methodologies developed to speed up the drug discovery processes include high-throughput screening and combinatorial chemistry. The complementarities between computational and experimental screenings have been recognized and reviewed in the literature. Computational methods have also been used in the combinatorial chemistry field, in particular in library design. However, the integration of computational and combinatorial chemistry screenings has been attempted only recently. Combinatorial libraries (experimental or virtual) represent a notable source of chemically related compounds. Advances in combinatorial chemistry and deconvolution strategies, have enabled the rapid exploration of novel and dense regions in the chemical space. The present review is focused on the integration of virtual and experimental screening of combinatorial libraries. Applications of virtual screening to discover novel anticancer agents and our ongoing efforts towards the integration of virtual screening and combinatorial chemistry are also discussed.  相似文献   

7.
During the last two decades, disulfide-based dynamic combinatorial chemistry has been extensively used in the field of molecular recognition to deliver artificial receptors for molecules of biological interest. Commonly, the nature of library members and their relative amounts are provided from HPLC-MS analysis of the libraries, allowing the identification of potential binders for a target (bio)molecule. By re-investigating dynamic combinatorial libraries generated from a simple 2,5-dicarboxy-1,4-dithiophenol building block in water, we herein demonstrated that multiple analytical tools were actually necessary in order to comprehensively describe the libraries in terms of size, stereochemistry, affinity, selectivity, and finally to get a true grasp on the different phenomena at work within dynamic combinatorial systems.

We show that multiple analytical tools are necessary in order to describe the different phenomena within disulfide-based dynamic combinatorial libraries in terms of size, stereochemistry, affinity and selectivity.  相似文献   

8.
9.
Combinatorial chemistry has produced libraries of millions of compounds in the last decade. Screening of those compounds, unfortunately, has not yet yielded as many new drug candidates as initially expected. Among a number of possible reasons, one is that many libraries combinatorial chemistry produced in the early periods are of the nature of linear, flat, and flexible molecules such as peptides and oligonucleotides, which do not have the desired properties to selectively interact with their targets to yield high quality hits and leads. In order to increase the number of quality hits and leads, rigid, structural featurerich and drug-like compound libraries are highly desirable. Design and development of structural features-rich and natural product-like combinatorial libraries, as well as high speed library production using modern solution and solid phase synthesis techniques such as IRORI's Directed Sorting technology, will be discussed.  相似文献   

10.
Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.  相似文献   

11.
The generation of diverse chemical libraries using the "libraries from libraries" concept by combining solid-phase and solution-phase methods is described. The central features of the approaches presented are the use of solid-phase synthesis methods for the generation of a combinatorial polyamine library. Following cleavage from the resin with HF, the polyamine library was reacted with ethyl nitrite in the solution phase to yield the desired nitrosamine library in good yield and purity. The approaches described enable the efficient syntheses of individual nitrosamines as well as mixture-based nitrosamine libraries.  相似文献   

12.
13.
The generation of novel structures amenable to rapid and efficient lead optimization comprises an emerging strategy for success in modern drug discovery. Small molecule libraries of sufficient size and diversity to increase the chances of discovery of novel structures make the high throughput synthesis approach the method of choice for lead generation. Despite an industry trend for smaller, more focused libraries, the need to generate novel lead structures makes larger libraries a necessary strategy. For libraries of a several thousand or more members, solid phase synthesis approaches are the most suitable. While the technology and chemistry necessary for small molecule library synthesis continue to advance, success in lead generation requires rigorous consideration in the library design process to ensure the synthesis of molecules possessing the proper characteristics for subsequent lead optimization. Without proper selection of library templates and building blocks, solid phase synthesis methods often generate molecules which are too heavy, too lipophilic and too complex to be useful for lead optimization. The appropriate filtering of virtual library designs with multiple computational tools allows the generation of information-rich libraries within a drug-like molecular property space. An understanding of the hit-to-lead process provides a practical guide to molecular design characteristics. Examples of leads generated from library approaches also provide a benchmarking of successes as well as aspects for continued development of library design practices.  相似文献   

14.
15.
In the continuing effort to find small molecules that alter protein function and ultimately might lead to new drugs, combinatorial chemistry has emerged as a very powerful tool. Contrary to original expectations that large libraries would result in the discovery of many hit and lead structures, it has been recognized that the biological relevance, design, and diversity of the library are more important. As the universe of conceivable compounds is almost infinite, the question arises: where is a biologically validated starting point from which to build a combinatorial library? Nature itself might provide an answer: natural products have been evolved to bind to proteins. Recent results in structural biology and bioinformatics indicate that the number of distinct protein families and folds is fairly limited. Often the same structural domain is used by many proteins in a more or less modified form created by divergent evolution. Recent progress in solid-phase organic synthesis has enabled the synthesis of combinatorial libraries based on the structure of complex natural products. It can be envisioned that natural-product-based combinatorial synthesis may permit hit or lead compounds to be found with enhanced probability and quality.  相似文献   

16.
BACKGROUND: The Darwinian concept of 'survival of the fittest' has inspired the development of evolutionary optimization methods to find molecules with desired properties in iterative feedback cycles of synthesis and testing. These methods have recently been applied to the computer-guided heuristic selection of molecules that bind with high affinity to a given biological target. We describe the optimization behavior and performance of genetic algorithms (GAs) that select molecules from a combinatorial library of potential thrombin inhibitors in 'artificial molecular evolution' experiments, on the basis of biological screening results. RESULTS: A full combinatorial library of 15,360 members structurally biased towards the serine protease thrombin was synthesized, and all were tested for their ability to inhibit the protease activity of thrombin. Using the resulting large structure-activity landscape, we simulated the evolutionary selection of potent thrombin inhibitors from this library using GAs. Optimal parameter sets were found (encoding strategy, population size, mutation and cross-over rate) for this artificial molecular evolution. CONCLUSIONS: A GA-based evolutionary selection is a valuable combinatorial optimization strategy to discover compounds with desired properties without needing to synthesize and test all possible combinations (i.e. all molecules). GAs are especially powerful when dealing with very large combinatorial libraries for which synthesis and screening of all members is not possible and/or when only a small number of compounds compared with the library size can be synthesized or tested. The optimization gradient or 'learning' per individual increases when using smaller population sizes and decreases for higher mutation rates.  相似文献   

17.
The concept of convergent synthesis can be extended to combinatorial chemistry in order to obtain collections of products characterized by considerable chemical diversity and a certain molecular complexity. In this work, a library consisting of three carboxylic acids containing a benzimidazolonic functionality with variations at two positions was synthesized on solid phase. After cleavage, this library was combined with a second library consisting of 16 solid-supported amines containing two points of variation. IRORI technology was used for the split-and-mix synthesis of the final 48 members library.  相似文献   

18.
《Chemistry & biology》1997,4(4):297-307
Background: The identification of potent small molecule ligands to receptors and enzymes is one of the major goals of chemical and biological research. Two powerful new tools that can be used in these efforts are combinatorial chemistry and structure-based design. Here we address how to join these methods in a design protocol that produces libraries of compounds that are directed against specific macromolecular targets. The aspartyl class of proteases, which is involved in numerous biological processes, was chosen to demonstrate this effective procedure.Results: Using cathepsin D, a prototypical aspartyl protease, a number of low nanomolar inhibitors were rapidly identified. Although cathepsin D is implicated in a number of therapeutically relevant processes, potent nonpeptide inhibitors have not been reported previously. The libraries, synthesized on solid support, displayed nonpeptide functionality about the (hydroxyethyl)amine isostere. The (hydroxyethyl)amine isostere, which targets the aspartyl protease class, is a stable mimetic of the tetrahedral intermediate of amide hydrolysis. Structure-based design, using the crystal structure of cathepsin D complexed with the peptide-based natural product pepstatin, was used to select the building blocks for the library synthesis. The library yielded a ‘hit rate’ of 6–7% at 1 μM inhibitor concentrations, with the most potent compound having a Ki value of 73 nM. More potent, nonpeptide inhibitors (Ki = 9–15 nM) of cathepsin D were rapidly identified by synthesizing and screening a small second generation library.Conclusions: The success of these studies clearly demonstrates the power of coupling the complementary methods of combinatorial chemistry and structure-based design. We anticipate that the general approaches described here will be successful for other members of the aspartyl protease class and for many other enzyme classes.  相似文献   

19.
Dynamic combinatorial libraries are powerful systems for studying adaptive behaviors and relationships, as models of more complex molecular networks. With this aim, we set up a chemically diverse dynamic library of pseudopeptidic macrocycles containing amino‐acid side chains with differently charged residues (negative, positive, and neutral). The responsive ability of this complex library upon the increase of the ionic strength has been thoroughly studied. The families of the macrocyclic members concentrating charges of the same sign showed a large increase in its proportion as the ionic strength increases, whereas those with residues of opposite charges showed the reverse behavior. This observation suggested an electrostatic shielding effect of the salt within the library of macrocycles. The top‐down deconvolution of the library allowed us to obtain the fundamental thermodynamic information connecting the library members (exchange equilibrium constants), as well as to parameterize the adaptation to the external stimulus. We also visualized the physicochemical driving forces for the process by structural analysis using NMR spectroscopy and molecular modeling. This knowledge permitted the full understanding of the whole dynamic library and also the de novo design of dynamic chemical systems with tailored co‐adaptive relationships, containing competing or cooperating species. This study highlights the utility of dynamic combinatorial libraries in the emerging field of systems chemistry.  相似文献   

20.
Parallel synthesis techniques aim to prepare collections of single compounds which, once tested, can easily be identified by their sole location in the synthesic array. On the other hand, true combinatorial chemistry produces libraries of compounds as mixtures of variable size which require a deconvolution procedure for identification of the active hits or leads. In the latter case, analytical methods are crucial for the success of the strategy and mass spectrometry plays a major role. If the goal is to identify all the library components, including expected products as well as by-products, various mass spectrometric techniques may be necessary. Library components can be separated according to their mass by increasing mass resolution or by their elution time by coupling liquid chromatography and mass spectrometry. The efficiency of such separation techniques are discussed as a function of the size and the degeneracy of the library. Library members possess common structural features which impart similar fragmentation patterns after ionization in the gas phase. This feature can be exploited by tandem mass spectrometry to specifically detect subfamilies of products. Examples of precursor ion scans, product ion scans and constant neutral loss scans will be shown that facilitate partial characterization of libraries. To solve the difficult problem of the quantitative analysis of libraries, i.e., to evaluate their equimolarity, the use of an evaporative light scattering detector (ELSD) or a chemiluminescent nitrogen detector (CLND) is suggested as more appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号