首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mean bond length SiO in silicon-oxygen octahedra is a function of the mean coordination number of the oxygen atoms (CN) in the octahedron: (SiO)mean = 1.729 + 0.013CN. The radius of Si in six coordination against oxygen is 0.407 Å.  相似文献   

2.
3.
The reaction of aluminium (Al) with monomeric silicic acid (Si(OH)4) to form an hydroxyaluminosilicate (HAS) has been well documented over the past 40 or so years. The formation of an aluminium hydroxide template, upon which Si(OH)4 will condense in competition with Al, was demonstrated to be a prerequisite to HAS formation. This initial reaction results in the formation of a slowly aggregating HAS, with a Si:Al ratio of 0.5, in which silicon tetrahedra are bonded to Al octahedra through three SiOAl linkages. We have called this HASA. In solutions in which the concentration of Si(OH)4≥Al HASA acts as a template for the incorporation of further silicon tetrahedra to give a rapidly precipitating HAS (that we have called HASB), with a Si:Al ratio of 1.0, in which up to 50% of the constituent Al has adopted tetrahedral geometry. There are, at present, no reliable constants to describe either the formation or the solubility of these HAS. They are extremely insoluble and are likely to play an important role in the control of the release of Al from the edaphic to the aquatic environment. They may also have an important role in Al homeostasis in biota though the evidence to support this is more tentative.  相似文献   

4.
High-resolution 29Si, 27Al, 15N, and 17O MAS NMR spectra have been obtained for both glass and crystalline samples of lanthanum U-phase, La3Si3Al3O12N2. Previous X-ray single-crystal studies have shown that this phase is iso-structural with rare-earth gallogermanates of the type Ln3Ga5GeO14, the atomic arrangement consisting of layers of [(Si,Al)(O,N)4] tetrahedra in the x, y plane of the hexagonal unit cell, linked together in the z-direction by [AlO6] octahedra, with rare-earth cations occupying the large holes in this network. However, previous studies obtained only a limited amount of information about cation and anion ordering, mainly deduced from bond-length data. NMR spectra have not only enabled the change in structure from glass to crystalline ceramic to be monitored, but have also given detailed ordering information about the latter, indicating partial disorder of both (Si,Al) and (O,N) on their respective sites in the tetrahedra.  相似文献   

5.
The structure of the cyclo-metalladisiloxane, Me2SiOSiMe2Ir(H)(CO)(PPh3)2, has been determined by single crystal X-ray diffraction using Mo-Kα radiation. Data were collected to 20 = 45 ° giving 6060 unique reflections,of which 4582 had I ?3σ(I). The latter were used in the full-matrix refinement. Crystallographic data: space group, P1; cell constants: 12.604(7),12.470(4), 15.821(6) Å, 66.93(6)°, 105.34(7)°, 112.41(8)°;V 2095(3) Å3; p(obs) 1.45 g/cm3; p(calc) 1.46g/cm3 (Z=2). The asymmetric unit consists of one iridium complex and one molecule of ethanol of salvation. The structure was solved by standard heavy atom methods and refined with all non-hydrogen atoms anisotrophic to final R factors, R1 0.034 and R2 0.042. The iridium metallocycle has approximate Cs symmetry with the mirror plane passing through the four-membered IrSiOSi ring. The average IrP, IrSi and SiO bond lengths are 2.38, 2.41, and 1.68 Å, respectively. The IrCO and CO bond lengths are 1.903(8) and 1.133(8). The H atom bonded to Ir was not located.The Ir atom is raised out of the basal, P2Si2 plane toward the carbonyl by about 0.26 Å. The most striking feature of the structure is the strain apparent in the four-membered ring. The internal angels are: 64.7 (SiIrSi), 96.8 (IrSiO), 97.8 (IrSiO), and 99.8 (SiOSi). In an unstrained molecule, the SiOSi angle is normally in the 130–150° range. It is proposed that the strain in the ring is consistent with the catalytic activity of the metallocycle.  相似文献   

6.
The crystal structure of the monoclinic compound BaMnFeF7 has been determined: a = 553.2(1), b = 1098.0(2), c = 918.3(1) pm, β = 94.67(1)°, V = 555.9(3) × 10?24 cm3, Z = 4. All atoms are in general positions of space group P21c, weighted R = 0.031, using 1771 independent single-crystal reflections with I > 2σ(I). The structure consists of edge-sharing dinuclear Mn2F6?10 units (MnMn = 322.2 pm), linked via corners by intermediate FeF6 octahedra, at which two cis ligands remain unbridged. The average distances in the distorted octahedra are MnF = 211.6 pm and FeF = 192.7 pm. The barium atoms are irregularly 12-coordinated with a mean distance BaF = 290.5 pm. The structure is discussed in relation to the trigonal weberite Na2MnFeF7 and others.  相似文献   

7.
The crystal and molecular structure of the adduct (HAlN-i-Pr)6AlH3 has been determined from single-crystal and three dimensional X-ray diffraction data collected by counter methods. The cage-type molecular structure consists of two six-membered rings, (AlN)3, joined together by four adjacent transverse AlN bonds; the loss of two of these bonds allows the complexation of one alane molecule, with five-coordination of the aluminum (trigonal bipyramidal geometry), through two AlN bonds and two AlHAl bridge bonds. The AlN bond lengths range from 1.873 to 1.959 Å; the average AlH bond length is 1.50(1) Å for the four-coordinated aluminum atoms; the average distance of the two apical hydrogens from the five-coordinated aluminum atom is 1.92(5) Å. Colourless prismatic crystals of the compound have the following crystal data: triclinic space group P1; a = 17.13(2); b = 10.78(2); c = 10.20(2) Å; α = 124.3(4), β = 92.0(4), γ = 92.1(5); Z = 2; calculated density 1.157 g/cm3. The structure has been refined by block-matrix, least-squares methods using 4358 independent reflections to a standard unweighted R factor of 4.9%.  相似文献   

8.
Nd3Si5AlON10 – Synthesis, Crystal Structure, and Properties of a Sialon Isotypic with La3Si6N11 Nd3Si5AlON10 was synthesized by the reaction of silicon diimide, aluminium nitride, aluminium oxide, and neodymium in a pure nitrogen atmosphere at 1650 °C using a radiofrequency furnace. The compound was obtained as a coarsely crystalline solid. According to the single‐crystal structure determination the title compound is isotypic with Ln3Si6N11 (Ln = La, Ce, Pr, Nd, Sm). Nd3Si5AlON10 (P4bm, a = 1007.8(1), c = 486.3(1) pm, Z = 2, R1 = 0.016, wR2 = 0.031) is built up by a three‐dimensional network structure of corner sharing SiON3 and (Si/Al)N4 tetrahedra (molar ratio Si : Al = 3 : 1). According to lattice energetic calculations using the MAPLE concept a differentiation of O and N seems to be reasonable. One of the two different sites for the tetrahedral centres is probably occupied by Si (distances: Si–O: 168.4(1), Si–N: 173.6(3)–176.0(4) pm) the second site by Si and Al with the molar ratio 3 : 1 (distances: (Si/Al)–N: 172.0(3)–176.6(2) pm). The Nd3+ ions are located in the voids of the (Si5AlON10)9– framework (distances: Nd–O: 261.07(8), Nd–N: 246.1(2)–286.6(2) pm).  相似文献   

9.
用29Si,27AlMASNMR,XRD及化学分析法研究了氯硅烷改性Y沸石的结构及组成变化,结果表明改性过程伴有脱铝和补硅作用,并同时有大量非骨架铝碎片形成.非骨架铝有两类,一类是27AlMASNMR可测的,另一类是不可测的.改性沸石的酸性可能来源于非骨架铝碎片.对各催化剂上甲苯歧化反应的考察表明,由于改性沸石酸度适中,是较HY沸石优良的催化剂.  相似文献   

10.
Rate constants for the gas phase reactions of CCl generated by the flash photolysis of CHBr2Cl with a series of silanes have been obtained by kinetic absorption spectroscopy. In general, the rate constants are very high, and range from (4.8 ± 0.5) × 108 (SiH4) to (6.4 ± 0.34) × 109 for Si2H6. CCl does not insert into the SiC or primary CH bonds of silanes and its rate of reaction with tertiary SiH bonds is 600 times greater than with tertiary CH bonds. CCl reacts slowly with the SiSi bond. kH/kD varies from 1.9 to 1.0 on going from primary to tertiary SiH bonds. The electrophilic character of CCl is manifested, on a per SiH bond basis, by excellent correlations between the rate constants and the hydrilic character of the SiH bond, and between log k and the ionization potential.  相似文献   

11.
High-resolution electron microscopy, apart from strikingly confirming the correctness of the X-ray-based models for the skeletal structure of the aluminosilicate frameworks of zeolites, points to the existence of new families of ordered, crystalline microporous solids (e.g., with composition AxBxCm?xO2m · nH2O, where A is an exchangeable monovalent cation, B is Al or Ga, C is Si or Ge, and x, m, n are integers.) It also reveals crystalline imperfections and unexpected superlattice structures in A-type and faujasitic zeolites, and the nature of the intergrowths in, for example, ZSM-5ZSM-11 materials. The short-range order of Si and Al within the aluminosilicate framework may be directly explored by magic-angle-spinning NMR (MASNMR) employing 29Si and 27Al nuclei. This technique probes the site symmetry and environment of these atoms. Al in tetrahedral as well as in octahedral sites may be readily identified and so may the populations of groups such as Si(OAl)4, Si(OAl)3, (OSi), etc., so that new information is obtained pertaining to Si, Al ordering in a variety of zeolitic solids.  相似文献   

12.
The molecular and crystal structure of tris(bistrimethylsilylamin)thallium was determined by means of single-crystal X-ray spectroscopy: in the space group P31c with a = 16.447(7), c = 8.456(7) Å; and Dc = 1.149 g cm?3 two molecules are located in the unit cell. The compound is isomorphous to the analogues Fe[N(SiMe3)2]3 or Al[N(SiMe3)2]3, respectively, which show a propellar-twist of the Si2N-groups versus the plane of the metal atom and the three nitrogen-atoms: Tl(N)3/Si2N 49.1°; SiNSi 122.6°; NSiC 111.8°; CSiC 107.1°; TlN 2.089 Å;; SiN 1.738 Å;; SiC 1.889 Å;.  相似文献   

13.
The structure of a titanium aluminium hydride complex of composition [(C5H5)2TiAlH4]2(CH3)2NC2H4N(CH3)2C6H6 has been determined by X-ray diffraction. The complex forms triclinic crystals with unit cell dimensions a = 8.406(2), b = 10.117(2), c = 11.269(3) Å; α = 112.01(2)°, β = 109.25(2)°, γ = 87.04(2)°, space group P1, Z = 2 and density d = 1.21 g/cm3. The structure was refined to give a discrepancy index R = 0.056. The crystals are composed of centrosymmetric molecules of (Cp2TiAlH4)2TMEDA (Cp = η5-cyclopentadienyl) and molecules of crystal benzene. Two moieties of Cp2TiH2AlH2 are linked by a tetramethylethylenediamine molecule (rAlN 2.11 Å). The aluminium atom is bonded to a titanium atom by a double hydride bridge (rAlH b = 1.8, 1.6 Å, rTiH b = 1.6 Å), and has trigonal bipyramidal stereochemistry, [H4N] (rAlH t = 1.6 Å).  相似文献   

14.
The local order around tungsten atoms in some phosphotungstate glasses of the K2OP2O5WO3−x system was studied by EXAFS and X-ray diffusion techniques. From a previous work by EPR and optical spectra, an axially distorted octahedral environment was deduced around tungsten in these glasses. In agreement with this result, EXAFS shows that the structure of the phosphotungstate glasses is built up of distorted WO6 octahedra joined by corners with PO4 tetrahedra: long WO distances can be associated with WOP bonds and short WO distances with WOW bonds as was already observed in crystallized phosphotungstates. X-Ray diffusion shows that even for large WO3 contents, WO6 octahedra are predominantly joined by corners.  相似文献   

15.
The structure of (Ph3SiN)2C has been determined by single crystal X-ray diffraction. The structure was solved by direct methods and refined to R = 0.071 for 593 independent diffractometer data. The crystals are rhombohedral, R3 with a = b = c 18.201(20) Å, α = β = γ = 48.82(2)°, and Z = 4. The three crystallographically independent molecules each have linear SiNCNSi chains lying along the crystallographic threefold axes; in two of the molecules the central carbon atom lies on a centre of symmetry. Principal mean bond lengths and angles are: Si, 1.696(25); SiC, 1.846(20); NC, 1.164(30); CC, 1.387(14) Å; CSi, 108.2(6); and CSiC, 110.8(6)°.  相似文献   

16.
An electron diffraction analysis of the molecular structures of 1,1,1,3,3,3-hexachloro-1,3-disilapropane and octachloro-1,3-disilapropane has been carried out. Deviations from the staggered conformation are indicated. The data may be approximated by models with C2 symmetry and a small tilt of the SiCl3 groups. The main bond lengths (rg) and bond angles obtained for (SiCl3)2 CH2 are: SiCl, 202.7(4); SiC, 186.6(6); CH, 109.8(24) pm, ClSiCl, 107.9(1); SiCSi, 118.3(7)°; and for (SiCl3)2CCl2: SiCl, 202.0(4); SiC, 190.2(9); CCl, 179.6(9) pm; ClSiCl, 109.5(1); SiCSi, 120.6(9); ClCCl, 110.9(16); SiCCl, 106.3(3)°.  相似文献   

17.
Reaction of BaO, Nb2O5, and Nb in mole ratios of 2.4:1.6:1 in an evacuated silica capsule at 1250°C produces a mixture of at least two products, one of which has the probable composition Ba6+xNb14Si4O47 (x ? 0.23). This compound has an hexagonal unit cell of dimensions a = 9,034 ± 0.004 Å, c = 27.81 ± 0.02 Å, probable space group P63mcm, Z = 2. Its structure has been determined from 942 independent reflections collected by a counter technique and refined by least squares methods to a conventional R value of 0.062. The basic structure consists of strings of four NbO6 octahedra sharing opposite corners, each string joined to the next by edge sharing of the end octahedra, so that the c axis corresponds to the length of a strand of seven corner-linked octahedra. Chains of three such strands are formed by corner sharing between the strands. The chains in turn are joined by NbO6 octahedra and Si2O7 groups in which the SiOSi linkage is linear. Barium atoms are in sites between the chains coordinated by 13 oxygen atoms. A second site, 15 coordinated, probably has a small amount of barium as well; the fractional occupancy for barium in this site is 0.076.  相似文献   

18.
The chemistry of mono or ortho silicic acid (Si(OH)4) is barely considered in most chemistry texts. Mention is usually only made of its autocondensation in forming hydrated amorphous silica and its reaction with ammonium molybdate in forming the molybdosilicic acid complex. Reference should now be made to its unique inorganic chemistry with aluminium (Al) and specifically aluminium hydroxide (Al(OH)3(s)) in forming hydroxyaluminosilicates (HAS(s)). The competitive condensation or substitution of Si(OH)4 into a framework of Al(OH)3(s) results in the formation of either HASA or HASB. Which type of HAS(s) predominates depends upon the ratio of Si:Al in preparative solutions with the formation of HASB requiring a two-fold excess of Si(OH)4 over Al. The Si:Al ratio of HASA is 0.5 and the existence of HASA is a prerequisite to the formation of HASB in which the ratio of Si:Al is 1.0. HASA is composed of only octahedrally co-ordinated Al, AlVI, whereas HASB is composed of equal quantities of AlVI and tetrahedrally coordinated Al, AlIV, and is formed by a Si(OH)4-fuelled dehydroxylation reaction. HAS(s) are significantly more ‘kinetically’ stable than Al(OH)3(amorphous) with HASB predicted to predominate at pH > 4.0 and [Si(OH)4] > 0.1 mmol/L. HAS(s) are critical secondary mineral phases in the biogeochemical cycle of Al and Si(OH)4 and the formation of HAS(s) have played a major role in precluding Al3+(aq) from biochemical evolution. In the future Si(OH)4 and the formation of HAS(s) are predicted to be of significant importance in providing protection for humans against a potentially burgeoning exposure to biologically available Al.  相似文献   

19.
An electron diffraction analysis of the molecular structure of the title compound has been carried out, and related vibrational spectroscopic measurements and calculations have been made. The main bond lengths (rg and bond angles rα) are as follows: SiCl, 202.8(2); SiC, 185.1(10); CCl, 179.4(11); CH, 111.2(18) pm; SiCCl, 111.7(4);l ClSiC, 109.95(21)°. The conformation of the molecule is staggered. The barrier to internal rotation is estimated to be around 10 kJ mol?1.  相似文献   

20.
《Solid State Sciences》2001,3(3):383-386
It is confirmed that the Zachariasen equation is more accurate than the Brown-Shannon equation. Moreover, it is shown that, given the value of the parameter R1 relative to the MoO bond in MoO6 octahedra, the calculated valence of molybdenum in Mo(V)O6 octahedra remains very close to 5 v.u. by varying the other bond parameter B in a wide range. For other oxidation states of molybdenum in MoO6 octahedra, the difference between the calculated valence and the formal oxidation state shows different types of dependence on B. These behaviours could explain some errors in valence data of the literature. The parameters for the MoO bond in MoO6 octahedra are recalculated as R1=1.8788 Å and B=0.3046 Å for all molybdenum oxidation states from +3 to +6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号