首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Dibutyltin(IV) oxide reacts with the cantharidin analogue, 4′-(7-oxabicyclo [2,2,1]-5-heptane-2,3-dicarboximide) benzoic acid, A, to give the complexes [(p-C8H8NO3-C6H4-COOBu2Sn)2O]2 (1) and (p-C8H8NO3-C6H4-COO)2SnBu2 (2) which had been characterized by IR and 1H, 13C, 119Sn NMR. Single X-ray crystal structure analysis has been determined for compound (1), which was analogue to most other [(RCOOBu2Sn)2O]2. The dimer features central of Bu4Sn2O2 unit with the two Bu2Sn groups being linked via bridging oxygen atom. Each tin atom adopts distorted trigonal bipyramidal structures via two carbons from a dibutyl moiety and three oxygen atoms from cantharidin derivative and bridging oxygen atom. In vitro tests show compounds 1 and 2 exhibit high cytotoxicity against P388 and HL-60.  相似文献   

2.
Feasible structures of the SnCl4 complex with pyridine-3-carboxylic acid chloride were calculated by the MP2/LANL2DZ method. The results of calculations were compared to experimental 35Сl nuclear quadrupole resonance (NQR) data. The coordination site of the ligand was found to be the nitrogen atom and not the carbonyl oxygen atom. The partial negative charge of the electron-donating center and the positive charge of the electron-drawing center increase appreciably upon complex formation.  相似文献   

3.
RHF/6-311G(d) calculations were performed for the H3COCOH molecule with full geometry optimization and at varied angles of rotation of the methoxy group about the C-O bond, with all the other geometric parameters optimized. The molecule can exist in two stable conformations with the dihedral angle O1C1O2C2 of 0.00° and 179.99°. The influence of the rotation angle on the population of the p y orbital of the carbonyl oxygen atom in compounds with different types of the adjacent bond is essentially similar. The results obtained are inconsistent with the concept of the p,π conjugation involving the p y orbitals of the planar molecular fragment (orbitals whose symmetry axes are perpendicular to this fragment).  相似文献   

4.
Acid?Cbase equilibria of the aqua adducts of Ru(II) arene complexes, general formulae [(??6-p-cymene)Ru (L1?3)Cl2] where L1?=?3-acetylpyridine (1), L2?=?4-acetylpyridine (2) and L3?=?2-amino-5-chloropyridine (3), then [(??6-p-cymene)Ru(HL4)Cl2] with HL4?=?isonicotinic acid (4); [(??6-p-cymene)Ru(HL5?8)Cl] where H2L5?=?2,3-pyridine dicarboxylic acid (5), H2L6?=?2,4-pyridine dicarboxylic acid (6), H2L7?=?2,5-pyridine dicarboxylic acid (7) and H2L8?=?2,6-pyridine dicarboxylic acid (8) have been studied. pK a values were determined by potentiometry at 25?°C and constant ionic strength of 0.1?M NaNO3. The assumed equilibria were confirmed by UV and 1H-NMR spectroscopy.  相似文献   

5.
Two Cd(HBimc)-based isomers, [Cd(HBimcN)(HBimcT)(H2O)]·3.5H2O·EtOH (1a·3.5H2O·EtOH, H2Bimc=1H-benzimidazole-5-carboxylic acid) and [Cd(HBimcN)(HBimcT)(H2O)] (1b), and two Cu(HMBimc)-based coordination polymers, [Cu(HMBimcN)2(H2O)]·1/2H2O (2·1/2H2O, H2MBimc=2-methyl-1H-benzimidazole-5-carboxylic acid) and [Cu(HMBimcT)2]·2THF·H2O (3·2THF·H2O), were self-assembled from Cd(ClO4)2·6H2O/H2Bimc and Cu(ClO4)2·6H2O/H2MBimc systems, respectively. Compound 1a adopts a ladder-like chain structure, comprised of a hydrogen-bond-stabilized Cd2(HBimcN)2-metallocyclic stair and a 1D straight -(Cd-HBimcT)n- edge, whereas compound 1b exhibits a 2D (4,4)-rhombus layered structure, intercrossed by 1D -(Cd-HBimcN)n- chains and -(Cd-HBimcT)n- chains. Compound 2 shows a 1D double-stranded wave-like chain from two single-stranded wave-like -(Cu-HMBimcN)n- chains and compound 3 adopts a 2D (4,4)-topological layer structure, intercrossed by subunits of 1D -(Cu-HMBimcT)n- chains. Interestingly, a pair of tautomeric HBimc building blocks—normal (N or HBimcN) and tautomer (T or HBimcT)—is simultaneously included in the structures of 1a and 1b, whilst the N- and T-configured HMBimc building blocks are present as separate entities in Cu species, 2 and 3, respectively. The existence of only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand in a Cu(II) network is observed for the first time.  相似文献   

6.
The structure and electronic parameters of ClZ(CH3)2X molecules (Z = C, Si, Ge, X = CH3, OCH3) were calculated by the RHF/6–31G(d) and RHF/6–311G(d,p) methods with full geometry optimization; calculations of ClZ(CH3)2OCH3 molecules were also performed by the RHF/6–31G(d) method with partial geometry optimization. The 35Cl NQR frequencies calculated from the populations of less diffuse 3p constituents of valence p orbitals of chlorine [RHF/6–31G(d)] were in agreement with the experimental values. The 35Cl NQR frequencies for molecules with X = OCH3 are lower than those for molecules with X = CH3 (the Z atom being the same), due mainly to direct through-field polarization of the Z-Cl bond, induced by the effect of unshared electron pair of the oxygen atom in the trans position with respect to that bond. The difference in the 35Cl NQR frequencies decreases in going from Z = C to Z = Si, Ge, in parallel with variation of the Z-Cl bond polarization as the size of Z increases.  相似文献   

7.
The kinetics of the initiated oxidation of acrylic acid and methyl methacrylate in the liquid phase were studied volumetrically by measuring oxygen uptake during the reaction. Both processes proceed via the chain mechanism with quadratic-law chain termination. The oxidation rate is described by the equation w = k 2/(2k 6)1/2[monomer]w i 1/2 , where w i is the initiation rate and k 2 and k 6 are the rate constants of chain propagation and termination. The parameter k 2/(2k 6)1/2 is 7.58 × 10?4 (l mol?1 s?1)1/2 for acrylic acid oxidation and 2.09 × 10?3 (l mol?1 s?1)1/2 for the oxidation of methyl methacrylate (T = 333 K). For the oxidation of acrylic acid, k 2 = 2.84 l mol?1 s?1 (T = 333 K) and the activation energy is E 2 = 54.5 kJ/mol; for methyl methacrylate oxidation, k 2 = 2.96 l mol?1 s?1 (T = 333 K) and E 2 = 54.4 kJ/mol. The enthalpies of the reactions of RO 2 ? with acrylic acid and methyl methacrylate were calculated, and their activation energies were determined by the intersecting parabolas method. The contribution from the polar interaction to the activation energy was determined by comparing experimental and calculated E 2 values: ΔE μ = 5.7 kJ/mol for the reaction of RO 2 ? with acrylic acid and ΔE μ = 0.9 kJ/mol for the reaction of RO 2 ? with methyl methacrylate. Experiments on the spontaneous oxidation of acrylic acid provided an estimate of the rate of chain initiation via the reaction of oxygen with the monomer: w i,0 = (3.51 ± 0.85) × 10?11 mol l?1 s?1 (T = 333 K).  相似文献   

8.
Carboxylatoiron(III) porphyrins have been synthesised by the action of carboxylic acids on the [(por)Fe]2O dimers. 1H NMR and ESR data of the isolated products are in accordance with pentacoordinate high spin 5/2 ferric complexes, the iron atom being displaced out of the plane of the porphyrin ligand. IR spectra show ν(CO) and ν(CO) bands separated by 356–409 cm?1. The magnitude of this separation suggests coordination between the metal centre and the carboxylate group via one oxygen atom. Magnetic susceptibility measurements from 5 to 120 K lead to the value of μ = 5.88 B.M.. The X-ray structure of acetato (5, 10, 15, 20-tetra p-tolyporphyrinato) iron(III) confirms the above deductions. (tp MePP) Fe(CO2CH3). 0.5 CH3COOH crystallises in the I2/c space group with unit cell parameters a = 24.464(8), b = 9.332(3), c = 37.174(4) Å, β = 90.49(2)°, V = 8485 Å3, Dc = 1.27 g · cm?3 and Z = 8. The crystal structure was refined to a conventional R(F) = 0.0584 and Rw(F) = 0.0653 for 5132 unique reflections with F0 > 3σ(F0). The iron atom is pentacoordinated by the four nitrogen atoms and one oxygen atom of the acetate group. It lies at 0.520(1) Å out of the porphinato plane and 0.485(1) Å out of the four nitrogen plane. The FeO bond length is 1.898(4) Å.  相似文献   

9.
The photophysical properties of rufloxacin, 9-fluoro-2r3-dihydro-10-(4-methyl-l-pyrazinyl)-7-oxo-7-H-pyri-do[l,2,3-de]-l,4-benzothiazin-6-carboxylic acid, a fluoroquinolone antibacterial drug exhibiting photosensitizing action toward biological substrates, were studied in aqueous solutions at neutral pH. The lowest excited electronic states of the zwitterion were characterized by both experimental techniques and theoretical methods. Steady-state and time-resolved emission, triplet-state absorption and singlet oxygen production were investigated. The results indicate that the lowest excited singlet is a fluorescent, relatively long-lived state (φr= 0.075, Tr? 4.5 ns) with an efficient intersystem crossing to the triplet manifold (φisc? 0-7)- The lowest triplet is a long-lived state (TT? 10 μs at 295 K in 0.01 M phosphate buffer), with properties that make it a good candidate for being the precursor of the photodecarboxylation of the drug. It is quenched by oxygen at a rate of 1.7 times 109M-1 s-1 and singlet oxygen is formed with a quantum yield of 0.32 in air-saturated solutions.  相似文献   

10.
The steric hindrance between the oxygen and halogen atoms results in the structural deformation of α-haloanthraquinones and their lowest excited triplet (T1) states are of mixed nπ *-ππ * or ππ * character with unusually short lifetimes. Moreover, the rates of hydrogen-atom abstraction from ethanol by the T1 states decrease with their increasing ππ * character, and the proximity of the halogen atom to the hydroxy group causes the photochemical intramolecular elimination of hydrogen halide from the initial photoproducts (α-haloanthrahydroquinones) yielding α-haloanthraquinones (or anthraquinone) with one less halogen atom than the original molecule; the final product is anthrahydroquinone. The remarkably large structural deformation of 1,8-dihaloanthrasemiquinone radicals which gives rise to the simultaneous formation of 1,8-dihaloanthrahydroquinones and the original anthraquinones. Of particular interest is observation of the absorption band(s) attributable to the second excited triplet (T2) states of 1,8-dihaloanthraquinones. However, the electron transfer from triethylamine (TEA) to these T2 states generating the radical anions is observed only in acetonitrile, while that to the T1 states generating their exciplexes with TEA is observed not only in acetonitrile but also in toluene and ethanol.  相似文献   

11.
We describe the preparation and crystal structures of the ionic complexes [Cu(bipy)2{ONC(CN)2}]CF3SO3 (1b), [Cu(phen)2{ONC(CN)2}]PF6 (2p) and [Cu(bipy)2{ONC(CN)2}]PF6 (2b). In the complex cations [Cu(L)2{ONC(CN)2}]+ (L is 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen)) the two molecules of bipy or phen coordinate to the copper atom through two nitrogen atoms along with the oxygen atom of the nitrosodicyanomethanide anion, ONC(CN) 2 ? , to form a {CuN4O} chromophore with a distorted square pyramidal coordination sphere in (1b) and (2b) and a distorted trigonal bipyramidal geometry in (2p). The basal plane in (1b) and (2b) is formed by an oxygen atom coordinated at the Cu1–O1 distance of 1.990(2) and 2.002(2) Å, respectively, and three nitrogen atoms coordinated to the copper atom at similar distances with the average of 2.01(2) and 2.00(3) Å, respectively. The axial position is occupied by the fourth N atom at the longer distance of 2.222(2) and 2.185(2) Å, respectively. The trifluoromethanesulfonate anion (triflate), CF3SO 3 ? , in (1b) might be considered as very weakly coordinated in the opposite axial position (Cu1–O2 = 2.719(2) Å). The equatorial plane in (2p) is formed by an oxygen atom coordinated at the Cu1–O1 distance of 1.975(3) Å, and two nitrogen atoms from different phen molecules coordinated to the copper atom at the same distance within 2 σ with the average distance of 2.124(2) Å. The axial positions are occupied by remaining two nitrogen atoms coordinated at shorter distance (average Cu–N = 1.99(3) Å). The hexafluorophosphate anions, PF 6 ? , in (2p) and (2b) remain uncoordinated. Besides the ionic forces, the structures of (2p) and (2b) may be stabilized by very weak C–H···F whereas the structure of (1b) by very weak C–H···F, C–H···O and C–H···N hydrogen bonds. The structural–spectral correlations are also discussed.  相似文献   

12.
The RHF/6-311G*(3d), RHF/6-311++G**(3df, 3p) and MP2/6-311G*(3d) ab initio methods were used to calculate the equilibrium structure of the products of the ion-molecular reaction of tritium ion transfer from HeT+ to cyclopentane and cyclohexane. Similar reactions with cyclopentanol and cyclopentanone were calculated at the RHF/6-311G*(3d) level. The interaction of HeT+ with cycloalkanes was found to produce onium ions with cyclic structures, in which the tritium atom held neighboring methylene groups together. With the alcohol and ketone, not only cyclic but also stabler linear cations could be formed, and the addition of the tritium ion directly to the oxygen atom was possible. The suggestion was made that the chain of tritium ion transfer reactions was the mechanism of the accumulation of tritium by hydrocarbon oxidation products when T2 was dissolved in mineral oils.  相似文献   

13.
The energies of combustion of chromone-3-carboxylic acid (C3CA), 6-methylchromone-2-carboxylic acid (6MCC), and 6-methyl-4-chromanone (6M4C) were determined using an isoperibolic micro-combustion calorimeter. The calorimeter used in the present work has been assembled, calibrated, and tested in our laboratory with the desired results. Prior to the measurement of the energies of combustion, the purities, heat capacities (C p), fusion temperatures (T fus), and enthalpies of melting (Δfus H) for each compound were determined by differential scanning calorimetry. The values of the energies of combustion were used to derive standard molar enthalpies of combustion ( \( \Delta _{{\text{c}}} H_{{\text{m}}}^{\circ } \) ) and standard molar enthalpies of formation ( \( \Delta _{{\text{f}}} H_{{\text{m}}}^{\circ } \) ) in the crystalline phase at T = 298.15 K. The values found for the \( \Delta _{{\text{f}}} H_{{\text{m}}}^{\circ } \) of C3CA, 6MCC, and 6M4C were ?(619.5 ± 2.6), ?(656.2 ± 2.2), and ?(308.9 ± 3.0) kJ mol?1, respectively.  相似文献   

14.
The reaction of alkyl aryl N-p-tosylsulphilimines with thiophenolate ion was found to afford quantitatively the sulphide that arises by an SN2 like reaction on the carbon atom adjacent to the tri-valent sulphur atom. This reaction was also found to proceed smoothly with such compounds as sulphoxides and sulphones and sulphoxmanes. The kinetic study on the reaction between aryl methyl N-p-tosylsulphilimine with thiophenolate ion in DMF reveals that the reaction is of second order, namely, first order with respect to each thiophenolate ion and the sulphilimine. The enthalpy and entropy of activation for the reaction are ΔH = ?17· kcal/mol and ΔS = ?5·7 eu respectively. The effect of substituents in the reaction, p-XC6H4+(?SO2C6H4Y-p)CH3 + p-ZC6H4SK is nicely correl with Hammett σ values giving ?x = + 2·4, ?y = + 1·2 and ?z = ?1·8 respectively. Meanwhile, a marked steric retardation by a bulky alkyl group in alkyl phenyl N-p-tosylsulphilimine is observed. Furthermore, from the stereochemical study of the reaction using an optically active sec-octyl phenyl N-p-tosylsulphilimine with thiophenolate ion it is concluded that the reaction proceeds via a typical SN2 process on α-carbon atom attached to the tri-valent sulphur atom.  相似文献   

15.
A two-potential localised exchange (TPLE) approach is used to study the role of spin dependence in the inelastic scattering of electrons by lithium atoms at intermediate energies. Results are presented for the spin-resolved orientation parameters (L S ,L T , andL ) in the polarized-electron impact resonant (2s–2p) excitation of polarized-lithium atom. Results are also obtained for the depolarization (P′ e /P e) in the polarized-electron impact resonant (2s–2p) and nonresonant (2s–3p) transition in unpolarized lithium atom. Further in the case when the fine structure splitting of the target is resolved, we also investigate the left-right scattering asymmetryS A (1/2) for the polarized-electron superelastically scattered from unpolarized 2p 1/2 and 3p 1/2 states.  相似文献   

16.
In order to investigate the gas‐phase mechanisms of the acid catalyzed degradation of ascorbic acid (AA) to furan, we undertook a mass spectrometric (ESI/TQ/MS) and theoretical investigation at the B3LYP/6‐31 + G(d,p) level of theory. The gaseous reactant species, the protonated AA, [C6H8O6]H+, were generated by electrospray ionization of a 10?3 M H2O/CH3OH (1 : 1) AA solution. In order to structurally characterize the gaseous [C6H8O6]H+ ionic reactants, we estimated the proton affinity and the gas‐phase basicity of AA by the extended Cooks's kinetic method and by computational methods at the B3LYP/6‐31 + G(d,p) level of theory. As expected, computational results identify the carbonyl oxygen atom (O2) of AA as the preferred protonation site. From the experimental proton affinity of 875.0 ± 12 kJ mol?1 and protonation entropy ΔSp 108.9 ± 2 J mol?1 K?1, a gas‐phase basicity value of AA of 842.5 ± 12 kJ mol?1 at 298 K was obtained, which is in agreement with the value issuing from quantum mechanical computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The standard (p o = 0.1 MPa) molar energies of combustion, $ \Updelta_{\text{c}} H_{\text{m}}^{\text{o}} $ , for indole-2-carboxylic acid and indole-3-carboxaldehyde, in the crystalline state, were determined, at T = 298.15 K, using a static bomb combustion calorimeter. For both compounds, the vapour pressures as function of temperature were measured, by the Knudsen effusion technique, and the standard molar enthalpies of sublimation, $ \Updelta_{\text{cr}}^{\text{g}} H_{\text{m}}^{\text{o}} $ , at T = 298.15 K, were derived by the Clausius–Clapeyron equation. From the experimental results, the standard (p o = 0.1 MPa) molar enthalpies of formation in the condensed and gaseous phases, at T = 298.15 K, of indole-2-carboxylic acid and indole-3-carboxaldehyde were derived. The results are analysed in terms of structural enthalpic increments.  相似文献   

18.
The crystal structure of a new heterodinuclear lanthanide complex, L2Cu(Me2CO)Dy(NO3)3 (L2=N,N′-bis(2-hydroxy-3-methoxy-benzylidene)-ethylenediamine) has determined and the magnetic properties of the complex investigated. (C18H18N2O4)Cu(C3H6O)Dy(NO3)3, monoclinic, space group P21/c, with a=9.875(2), b=18.870(7), c=15.675(8) Å, β=95.45(3)°, V=2908(2) Å3, Z=4. The structure consists of ordered dinuclear units with CuII and DyIII ions bridged by two phenolato oxygen atoms of the Schiff base ligand. The CuII ion has a square-pyramidal geometry involving the basal N2O2 donor atoms of the Schiff base ligands and one oxygen atom of the acetone molecule at the apex position. The DyIII ion is decacoordinated by the four oxygen atoms of L2 and six oxygen atoms from the three bidentate nitrate ions. The Cu?Dy separation is 3.461(2) Å. The χT versus T plots, χ being the molar magnetic susceptibility per CuIIDyIII unit and T the temperature, has been measured in the 4.5-300 K temperature range. The magnetic properties of the compound are dominated by the crystal field effect on the DyIII site, masking the magnetic interaction between the paramagnetic centers.  相似文献   

19.
The dissociation constants of N,N'-bis(3-hydroxypropyl)dithiooxamide and N,N'-bis(2-hydroxypropyl)dithiooxamide were determined by a spectrophotometric method using a weighted least squares technique for the calculations. For N,N'-bis(3-hydroxypropyl) dithiooxamide a thermodynamic constant pK1T of 11.37 was found. At ionic strength μ = 1, pK1 = 11.27 and pK2 = 14.29. For N,N'-bis-(2-hydroxypropyl) dithiooxamide, these values were respectively: pK1T = 11.11; pK1 = 10.99 and pK2 = 13.75.  相似文献   

20.
The reactions of GeCl4, GeBr4, and MeGeCl3 with O-trimethylsilyl derivatives of N,N-disubstituted amides of 2-hydroxycarboxylic acids afforded pentacoordinate and hexacoordinate neutral (O,O)-mono- and (O,O)-bischelates. The reactions of glycolic acid derivatives with GeX4 produced bischelates X2Ge[OCH2C(O)NR2R3]2 7a,c,d (X = Cl, R2 = R3 = Me (a), (CH2)5 (c), (CH2CH2)2O (d)) and 8a (X = Br). By contrast, the reactions of lactic and mandelic acid derivatives with GeCl4 and MeGeCl3 gave monochelates Cl3Ge[OCH(R1)C(O)NR2R3] (S)-9a–c (R1 = Me) and Cl2MeGe[OCH(R1)C(O)NR2R3] 10a (R1 = H), (S)-11a,b (R1 = Me), and (S)-12a (R1 = Ph) (R2R3 = (CH2)4 (b)), respectively. According to the X-ray diffraction data, the Ge atom in bischelates 7c,d and 8a has a coordination number 6, and its coordination polyhedron can be described as a slightly distorted octahedron. In monochelates (S)-9a-c, 10a, (S)-11a,b, and (S)-12a, the Ge atom has a coordination number 5, and its coordination polyhedron can be described as a trigonal bipyramid with two halogen atoms or one halogen atom and one ethereal oxygen atom in equatorial positions and the halogen atom and the amide oxygen atom in the axial positions. The bonds in the axial positions are somewhat longer than the corresponding bonds in tetracoordinate Ge compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号