首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D. Sevdić  L. Fekete 《Polyhedron》1985,4(8):1371-1378
Reactions of MoCl3(THF)3 and MoCl3(PrCN)3 with the macrocyclic polythiaethers: 1,4,8,11-tetrathiacyclotetradecane (TTP) and 1,4,7,10,13,16-hexathiacyclooctadecane (HTO) were studied. The type of reaction and the complexes formed depend on reactant concentration and nature of the solvent. The complexes: [MoCl3(HTO)], [(MoCl3)2(HTO)(THF)3], [MoCl3(TTP)(THF)] and [MoCl3(TTP)] in which the macrocyclic polythiaethers are coordinated to the molybdenum through sulphur atoms were isolated. Some new mixed-valence complexes were formed in reactions where a partial change in the molybdenum oxidation state and a cleavage of the macrocyclic ring took place. The following complexes were isolated: [Mo3Cl9(PHT)2(PrCN)]·CH2Cl2, [Mo3Cl9(PHT)2(THF)] · CH2Cl2, [Mo2Cl6 (PHT)] · CH2Cl2, [Mo3Cl9(TTT)2(THF)] · CH2Cl2, where PHT = 3,6,9,12,15-pentathiaheptadec- 16-ene-1-thiolato(1-) and TTT = 4,7,11-trithiatridec-12-ene-1-thiolato(1-). The complexes were characterized on the basis of elemental analyses, magnetic measurements, IR, 1H NMR, 13C NMR and mass spectra.  相似文献   

2.
Thiochloro Anions of Molybdenum (IV). Crystal Structure of (NEt4)3[Mo33-S)(μ-S2)3Cl6]Cl μ CH2Cl2. Crystal Structure, Magnetic Properties, and EPR-Spectrum of (NEt4)2 [Mo2(μ-S2)(μ-Cl)2Cl6] From molybdenum pentachloride and tetraethylammonium hydrogensulfide in CH2Cl2 an insoluble product of composition (NEt4)2[Mo2S3Cl9] was obtained along with a brown solution, from which (NEt4)2[Mo2(S2)Cl8] was crystallized. The insoluble product and NEt4Cl react in CH2Cl2 to yield, among others, (NEt4)3[Mo3(S)(S2)3Cl6]Cl · CH2Cl2. The latter crystallizes in the orthorhombic space group Pnma, a = 2495.8, b = 1501.2, c = 1295.6 pm, Z = 4. According to the crystal structure determination (3070 observed reflexions, R = 0.049) the [Mo3(S)(S2)3Cl6]2? ion consists of an Mo3 triangle with Mo? Mo bonds, each side of the triangle is bridged by disulfido groups and one sulfur atom is capped over the Mo3 triangle; the single chloride ion is looseley associated to three S atoms. (NEt4)2[Mo2(S2)Cl8] also crystallizes in the space group Pnma, a = 1425.6, b = 1129.9, c = 2004.7 pm, Z = 4; structure determination with 1703 observed reflexions, R = 0.061. In the [Mo2(S2)Cl8]2? ion the Mo atoms are bridged via one disulfido group and two chlorine atoms. There is a Mo? Mo bond, but according to the magnetic properties and the EPR spectrum each Mo atom still possesses one unpaired electron.  相似文献   

3.
Reaction of 2,2-Dimethylpropylidynephosphine with Molybdenum Pentachloride; Crystal Structure of [Mo2Cl6(α,α′-dipyridyl)3] 2,2-Dimethylpropylidynephosphine and molybdenum pentachloride dissolved in POCl3 react with oxydation of the phosphorus and reduction of the molybdenum atom to give the alkyne complex [Mo2Cl4(μ-Cl)2(μ-H9C4? C?C? C4H9)(OPCl3)2]. Addition of α,α′-dipyridyl or of methyltriphenylphosphonium chloride in dichloromethane results in a displacement of the ligands POCl3 and H9C4? C?C? C4H9 from this complex and in the formation of [Mo2Cl6(dipy)3] or [(H5C6? )3P? CH3]3[Mo2Cl9]. Besides the latter compound small amounts of [(H5C6? )3P? CH3]2[MoCl6] can be isolated from the reaction mixture. [Mo2Cl6(dipy)3] which has already been prepared by other methods crystallizes in the monoclinic space group P21/c with {a = 1612; b = 148; c = 1296 pm; γ 109.3°; Z = 4} at 20°C. As shown by a crystal structure determination the complex is built up from [MoCl2(dipy)2]+ cations and [MoCl4(dipy)]? anions. The molybdenum atoms are both octahedrally surrounded. With average values of 238 and 243 pm the Mo? Cl bond distances in the cation, where a cis-arrangement of the chlorine atoms is observed, and in the anion differ significantly from each other. [Mo2Cl6(dipy)3] which has already been prepared by other methods crystallizes in the monoclinic space group P21/c with {a = 1612; b = 148; c = 1296 pm; γ = 109.3°; Z = 4} at 20°C. As shown by a crystal structure determination the complex is built up from [MoCl2(dipy)2]+ cations and [MoCl4(dipy)]? anions. The molybdenum atoms are both octahedrally surrounded. With average values of 238 and 243 pm the Mo? Cl bond distances in the cation, where a cis-arrangement of the chlorine atoms is observed, and in the anion differ significantly from each other.  相似文献   

4.
5.
Reaction of [Mo6Cl8]X4 with N-Bases [Mo6Cl8]X4 (X = Cl, Br, I) in ethanol solution by titration with Ag+ showed 4 labil X atoms. The displacement of X? especially by F? accelerates the titration decisively. Conductivity measurements in ethanol or acetone showed that [Mo6Cl8]X4 at 25°C behave as weak 1:1-electrolytes. Solutions of [Mo6Cl8]X4 in DMF heated up to 60°C and than lowered to 25°C showed that the compounds in this solvent behave as (potential) strong 2:1-valent electrolytes. From the following compounds the labil halides have been determined by titration with Ag+: [Mo6Cl8]X4(Py)2 (X = Cl, Br), [Mo6Cl8]X4(bipy)2 (X = Cl, Br, I), [Mo6Cl8]X4(Phenpy)2 (X = Cl, Br, I), (PyH)2[Mo6Cl8]X6 (X = Cl, Br); (bipyH)2[Mo6Cl8]I4Cl2. Always 4 (respectively 6) labil halides have been observed; exception [Mo6Cl8]Cl4(Py)2 in acetone (2 labil Cl). Lattice constants and mole volumina for the adducts with pyridin and bipyridin have been determined. The adducts with bipyridin and phenylpyridin are isotypic. Conductivity measurements have been made in different solutions. The decomposition on the thermobalance showed that in [Mo6Cl8]Cl4(Py)2 the bond of pyridin is weak. The 2 pyridin molecules are evolved at the same time. However [Mo6Cl8]I4(Bipy)2 loses 1 bipyridin only. (PyH)2[Mo6Cl8]X6 formed during the first decomposition step the novel compounds (PyH) [Mo6Cl8]X5 (X = Cl, Br). Both compounds are isotypic. They behave in ethanol solution as strong 1:1-valent electrolytes.  相似文献   

6.
Summary The complex [Bu 4 n N][Mo2O2Cl5(SPh)2] has been prepared by reaction of [Bu 4 n N][MoO(SPh)4] with stoichiometric amounts of HCl and characterised by single crystal X-ray structure analysis. The dimer is bridged by two oxo-groups and one chloride and each Mo has pseudo-octahedral co-ordination. The related compound [Mo2O3(SPh)2(S2CNMe2)2] was synthesised by reaction of [MoO2(S2CNMe2)2] with thiophenol in methanol and has also been characterised crystallographically. In this case the triple-bridge consists of two thiophenolate sulphurs and one oxo-group, each molybdenum having pseudo-octahedral geometry. These structures are compared with other triply-bridged species.  相似文献   

7.
Reaction of [Mo63-Cl)8Cl6]2− with H2Se, generated in situ from ZnSe and 4 M HCl under hydrothermal conditions lead to the substitution of one or two bridging chlorides, depending on the reagents ratio. With the Mo6/ZnSe 1:3 molar ratio [Mo63-SeCl7)Cl6]3− forms selectively in high yield. Further substitution is more hindered, and even at 1:20 cluster-to-selenide molar ratio a mixture of [Mo63-SeCl7)Cl6]3− and [Mo63-Se2Cl6)Cl6]4− is formed. The products were characterized by X-ray, Raman spectra and electrospray ionization mass spectrometry.  相似文献   

8.
The triangular six-electron cluster complex [Mo3S4Cl4(PEt3) x (thf)5] produced by the excision reaction of Mo3S7Cl4 with triethypholsphine is reduced by magnesium at – 20°C. Subsequent addition of dppe (=1,2-his(diphenylphosphino)ethane) to the reduced species affords a seven-electron triangular cluster complex [Mo3S4Cl3(dppe)2(PEt3)]. The complex crystallizes in the space groupCm witha=17.170(6),b-19.878(6),c = 13.289(5) = 121.73(2)°,V = 3858(2) A3, andZ = 2. The structure shows an almost equilateral triangle of three molybdenum atoms capped by a Sulfur atom and bridged by three sulfur atoms. The Mo Mo distances, ranging from 2.804(1) to 2.809(1) A are elongated ca. 0.04 A as compared with lose of a six-electron cluster complex with drape ligands. Two molybdenum atoms have a chlorine and a dppe ligands, and the other molybdenum atom bas a chlorine and a triethylphosphine ligands. The UV-Vis spectrum has a characteristic broad hand centered at 1410 n m, which is not observed for six-electron clusters. The ESR spectrum indicates the presence of an unpaired electron consistent with the formulation of the compound as a seven-electron cluster.Dedicated to Professor fiaxi Lu on the occasion of his 80th birthday.  相似文献   

9.
Some Reactions with [Mo6Cl8]Cl4 The reaction of [Mo6Cl8]Cl4 with different chemical agents has been investigated: The methoxylation depends on the CH3O? concentration in CH3OH. The reaction with HF leads to a partial fluorinated [Mo6Cl8] product. With NH4F (NH4)2[Mo6Cl8]F6 in formed, the hydrolysis of which leads to [Mo6Cl8]F3(OH) · 2.5 H2O. This compound can be decomposed thermically into [Mo6Cl8]O2. [Mo6Br8]F62? on hydrolysis leads to [Mo6Br8]F3(OH) · 5 H2O. With CsF Cs2[Mo6Cl8]F6 is formed, which by hydrolysis is transformed into [Mo6Cl8]F3(OH) · 2.5 H2O and possibly to [Mo6Cl8]F4 · xH2O(?). In reaction of [Mo6Cl8]Cl4 with H2SO4 one gets [Mo6Cl8](SO4)2. Salts e. g. [(C6H5)4As]2[Mo6Cl8](OC6F5)6 and adducts e. g. [Mo6Cl8](OC6F5)4 · 2 HMPA are prepared. The compounds have been characterized by X-ray powder-diagramms and by IR-spectra.  相似文献   

10.
Synthesis and Crystal Structure of Mo2<>NCl8 and Mo3N2Cl11 The reaction of MoCl5 with Cl3VNCl at 140 °C in a sealed glass ampoule yields air sensitive black crystals of the mixed valent molybdenum(V, VI) nitride chloride, Mo2NCl8. It crystallizes in the monoclinic space group P2/c with a = 996.1(1), b = 629.4(1), c = 1780.8(3) pm, β = 101.82(2)°, and Z = 4. The crystal structure consists of dinuclear C2‐symmetrical units [Cl2(N≡)Mo(μ2‐Cl)3Mo(≡N)Cl2] and [Cl4Mo(μ2‐Cl)MoCl4]+, connected in an alternating sequence by asymmetric nitrido bridges Mo≡N‐Mo to form chains. The reaction of Cl3VNCl with MoCl3 at 140 °C affords Mo3N2Cl11, but for the prolonged reaction period, MoNCl3 is observed in addition. Mo3N2Cl11 can also be obtained from MoNCl3 and MoCl5 (2:1) at 140 °C. It forms orthorhombic, black crystals with the space group Pca21 and a = 1256.1(1), b = 1001.9(1), c = 1330.10(5) pm, and Z = 4. The structure contains the same dinuclear units [Cl2(N≡)Mo(μ2‐Cl)3Mo(≡N)Cl2] as in Mo2NCl8, which in this case are connected with MoCl4+ moieties by asymmetric nitrido bridges Mo≡N‐Mo forming chains. In Mo2NCl8 the Mo‐N distances in the nearly linear nitrido bridges are 167.6(2), and 214.8(2) pm, whereas in case of Mo3N2Cl11 two sets of Mo‐N distances of 166, 8(4) and 214, 0(4) pm as well as 166, 9(4) and 211, 9(4) pm are observed.  相似文献   

11.
Reaction of heterometal cuboidal clusters [Mo3(MCl)S4(H2O)9]3+ (M = Ni, Pd) with PhSO2Na in aqueous HCl leads to the substitution at Ni or Pd to give the [Mo3(M(PhSO2))(H2O)9—xClx](3—x)+species, isolated as supramolecular adducts with cucurbituril (Cuc) [Mo3(Ni(PhSO2))S4Cl1.17(H2O)7.83][Mo3(Ni(PhSO2))S4Cl2.22(H2O)6.78]Cl2.61 · Cuc · 15H2O ( 1 ) and [Mo3(Pd(PhSO2))S4Cl1.12(H2O)7.88][Mo3(Pd(PhSO2))S4Cl2.29(H2O)6.71]Cl2.59 · Cuc · 11H2O ( 2 ), respectively. Crystal structure of 1 and 2 was determined, revealing that the PhSO2 is coordinated via its sulfur atom (Ni — S 2.182 Å, Pd — S 2.305 Å). The structure of these isostructural compounds is built from triple aggregates {(cluster)(Cuc)(cluster)} united into zigzag chains via hydrogen bonds between coordinated PhSO2 and H2O ligands.  相似文献   

12.
Results of SCCC MO calculations for the dimeric oxygen double-bridged [Mo2O4Cl4(H2O)2]2–ion are reported. On the basis of these results the previously reported spectra and magnetic properties may be explained. The strong direct molybdenum — molybdenum interaction in the Mo2O 4 2+ core was proved to exist.
Zusammenfassung Die Ergebnisse von SCCC MO-Rechnungen für das zweikernige Ion [Mo2O4Cl4(H2O)2]2– mit zweifacher Sauerstoffbrücke werden mitgeteilt. Danach können die früher angeführten magnetischen und spektralen Eigenschaften dieses Ions verstanden werden. Die Existenz starker unmittelbarer Molybdän-Molybdän Wechselwirkungen innerhalb des Mo2O 4 2+ Kerns wird nachgewiesen.

Résumé Résultats de calculs SCCCMO pour l'ion dimère Mo2O4Cl4(H2O) 2 2– . Sur la base de ces résultats les propriétés spectrales et magnétiques précédemment obtenues peuvent être expliquées. L'existence d'une forte interaction directe molybdène-molybdène dans le coeur Mo2O 4 2+ est clairement démontrée.
  相似文献   

13.
Molybdenum and Tungsten Complexes with MNS Sequences. Crystal Structures of [MoCl3(N3S2)(1,4‐dioxane)2] and [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 The cyclo‐thiazeno complexes [Cl3MNSNSN]2 of molybdenum and tungsten react with 1,4‐dioxane in dichloromethane suspension to give the binuclear donor‐acceptor complexes [μ‐(1,4‐dioxane){MCl3(N3S2)}2] which are characterized by IR spectroscopy. With excess 1,4‐dioxane the molybdenum compound forms the complex [MoCl3(N3S2)(1,4‐dioxane)2] in which, according to the crystal structure determination, one of the dioxane molecules coordinates at the molybdenum atom, the other one at one of the sulfur atoms of the cyclo‐thiazeno ring. The μ‐(NSN2–) complex [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 has been obtained by the reaction of [MoN(OCMe3)3] with trithiazyle chloride in carbontetrachloride solution. According to the crystal structure determination this compound forms centrosymmetric dimeric molecules via two of the nitrogen atoms of two of the μ‐(NSN) groups to give a Mo2N2 fourmembered ring. [MoCl3(N3S2)(1,4‐dioxane)2]: Space group P21/c, Z = 4, lattice dimensions at –70 °C: a = 1522.9(2); b = 990.3(1); c = 1161.7(1) pm; β = 106.31(1)°, R1 = 0.0317. [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 · 4 CCl4: Space group P21/c, Z = 2, lattice dimensions at –83 °C: a = 1216.7(1); b = 2193.1(2); c = 1321.8(1) pm; β = 98.23(1)°; R1 = 0.0507.  相似文献   

14.
Dithiolylium Chlorooxomolybdates(V): Synthesis and Crystal Structure of (C3Cl3S2)[MoOCl4] and (C3Cl3S2)[Mo2O2Cl7] The reaction of 3, 4, 5‐Trichlor‐1, 2‐dithiolylium chloride with MoOCl3 in dichlormethane under solvothermal conditions at 65 °C simultaneously yields the green tetrachlorooxomolybdate(V) (C3Cl3S2)[MoOCl4] and the yellow‐brown heptachlorodioxodimolybdate(V) (C3Cl3S2)[Mo2O2Cl7]. The crystal structures of both compounds contain nearly planar (C3Cl3S2)+ ions with a S—S bond length of 203 pm. The discrete [MoOCl4] ion in the structure of (C3Cl3S2)[MoOCl4] has the shape of a square pyramid with the oxygen atom at the apex. The molybdenum atom is displaced by 58 pm from the basal plane towards the oxygen atom. The [Mo2O2Cl7] ion in the structure of (C3Cl3S2)[Mo2O2Cl7] has the form of a face‐sharing double octahedron. It is formally composed of a [MoOCl4] ion and a MoOCl3 molecule connected by one symmetrical and two unsymmetrical chloro bridges. The molybdenum atoms placed in the centers of such connected octahedra are 357 pm apart, indicating no Mo—Mo bond.  相似文献   

15.
Synthesis and Structure of Mo2NCl7 The reaction of VN with MoCl5 at 175 °C in a sealed glass ampoule yields the molybdenum(V) nitride chloride Mo2NCl7 in form of air sensitive black crystals with the triclinic space group P1¯ and a = 905.7(8); b = 975.4((6); c = 1283.4(8) pm, α = 103.13(4)°; β = 109.83(5)° und γ = 98.58(5)°. The crystal structure is built up from dinuclear units [Mo2N2Cl7]3— and [Mo2Cl7]3+, which are connected by asymmetric nitrido bridges to form endless chains. Within both dinuclear units the Mo atoms are bridged by three Cl atoms resulting in a Mo‐Mo distance of 349.2(3) pm in the unit [Mo2N2Cl7]3—. In case of [Mo2Cl7]3+, however, a shorter Mo‐Mo distance of 289.4(3) pm is observed, which can be interpreted by a single bond. Correspondingly a reduced magnetic moment of 0.95 B.M. per Mo atom is observed.  相似文献   

16.
EPR-Investigations of α-Dichloro-bis[chloro?bis(N,N?diethyldiselenocarbamato)molybdänum(V)] dichloride, [Mo2Cl4(däsc)4]Cl2. Preparation and bonding properties of the coordination sphere of [Mo2Cl4(däsc)4]Cl2 studied by EPR, are reported. The EPR-spectrum at 77°K can be described by an axial symmetric spin-HAMILTONian, the parameters of which are g| = 2.046, g|= 1.996, A| = 53.5 · 10?4 cm?1, and A| = 22.8 · 10?4 cm?1. No 77Se-ligand hyperfine structure could be observed. The very high g-values are explained as being caused by strong ligand spin-orbit interaction, CT-contributions and a high degree of co valency of tho Mo? Se bond. Using an MO-model of the symmetry C4v, the bonding parameters of the first coordination sphere have been calculated.  相似文献   

17.
Four new molybdenum complexes [MoVIO2(L1)(Him)] ( 1 ), [MoVIO2(L1)(3‐MepzH] ( 2 ), [MoVIO2(L2)(3‐MepzH)] ( 3 ), and [(MoVIO2)2(μ‐L3)(MeOH)2] ( 4 ) were synthesized and characterized by IR, NMR, ESI‐MS, and single‐crystal structure analysis [H2L1 = 2‐(salicylideneamino)‐2‐methyl‐1‐propanol, H2L2 = 2‐(3‐methoxysalicylideneamino)‐2‐methyl‐1‐propanol, H4L3 = 1, 7‐bis(salicylidene)dihydrazide malonic acid, Him = imidazole and 3‐MepzH = 3‐methylpyrazole]. In all four structures the molybdenum atom has a distorted octahedral coordination with the three meridional donor atoms from the Schiff base di‐ or tetraanion (L1, 2)2—/(L3)4— and one oxo group occupying the sites of the equatorial plane. The other oxo group and the azole or methanol molecule occupy the apical sites. In 1—3 two centrosymmetrically related molecules form a hydrogen‐bonded pair through the (azole)N‐H···O(alkoxo) interaction. Additional crystal packing appears to be controlled mostly by π stacking between the aromatic rings of the salicyl moiety. ESI‐MS investigations reveal that the integrity of complexes 1—4 is largely retained in methanol solution. At the same time evidence is provided that di‐ to tetranuclear oligomers of formula [{MoVIO2(L)}x] and [{MoVIO2(L)}x(3‐MepzH)] with L = L1, L2, x = 2, 3, 4 are present simultaneously with 2 and 3 in methanol solution, respectively the tetranuclear species [{(MoVIO2)2(L3)}2] with 4 .  相似文献   

18.
Synthesis and Crystal Structure of (PPh4)2[Mo2(S2)2Cl8] · 2 CH3CN and its Topotactic Transformation to (PPh4)2[Mo2(S2)2Cl8] MoS2Cl3 was prepared from molybdenum and S2Cl2 at 200 °C. Its reaction with PPh4Cl in acetonitrile yielded (PPh4)2[Mo2(S2)2Cl8] · 2 CH3CN. In vacuum or upon warming, it loses the acetronitrile without degradation of the crystals. According to the X-ray crystal structure determinations both compounds, with and without acetonitrile, are triclinic. They contain the same [Cl4Mo(μ-S2)2MoCl4]2– ions, in which the Mo atoms are joined by two disulfido groups and an Mo–Mo bond. Details of the crystal packings and their topotactic transformation are given.  相似文献   

19.
Reaction of [MoOCl5]2− with in situ generated H2Se under hydrothermal conditions (4M HCl, 140 °C) leads to reduction of Mo(V) to Mo(IV) with the formation of a triangular cluster Mo33-Se)(μ-O)34+ in high yield. It is present in HCl solutions as aqua chlorocomplex [Mo33-Se)(μ-O)3(H2O)6Cl3]+ which was isolated and structurally characterized as supramolecular adduct with cucurbit[6]uril (CB[6]), {[Mo33-Se)(μ-O)3(H2O)6Cl3]2CB[6]}Cl2·15H2O. Dedicated to Professor Dieter Fenske on the Occasion of his 65th Birthday  相似文献   

20.
The novel dioxomolybdenum(VI) complexes with methyl ( 1 ), ethyl ( 2 ), n‐propyl ( 3 ), i‐propyl ( 4 ), n‐butyl ( 5 ) and cyclohexyl ( 6 ) ester of 2‐mercaptonicotinic acid have been prepared in the reactions of MoO2Cl2 and MoO2(acac)2 (acac = 2,4‐pentandionate) with mercaptonicotinic acid in corresponding alcohol. The esterification reaction was catalyzed by MoV originated from the reduction of MoVI with mercaptonicotinic ‐SH group with simultaneous formation of S–S bond resulting from the condensation of two 2‐mercaptonicotinic molecules. The presence of MoV was proved by ESR spectra. The molecular and crystal structures of 1 , 2 , 3 and 4 as well as of the by‐products 1,1′‐dithio‐2,2′‐n‐butylnicotinoate ( 7 ) and tetramethylammonium hexachloromolybdate(V) ( 8 ) have been determined by a X‐ray single crystal diffraction. The complexes 1 – 4 contain MoO22+ core with octahedral coordination of each molybdenum atom complexed by two 2‐mercaptonicotinato N and S donor atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号