首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thiocyanato bridged mixed-valence ruthenium dinuclear species [{Ru(NH3)5}2SCN]4+ has been prepared and characterized. A solvent independent, low intensity intervalence transfer band was observed in the near IR absorption spectrum suggesting a delocalized limit in the [Ru(II)-SCN-Ru(III)] unit.  相似文献   

2.
A procedure for the synthesis of mpa h c-[Ru(NO)(NH3)4(OH)]Cl2 in a nearly quantitative yield (~95%) comprising treatment of a solution of (NH4)2[Ru(NO)Cl5] with ammonium carbonate at t ~80°C was developed. It was found that [Ru(NO)(NH3)4(H2O)]Cl3·H2O and trans-[Ru(NO)(NH3)4Cl]Cl2 formed in the reaction of [Ru(NO)(NH3)4(OH)]Cl2 with hydrochloric acid at various temperatures most often contain some initial hydroxy complex. The former compound is unstable, even at room temperature, it slowly eliminates water and HCl. A procedure for preparing the latter compound in a pure state in 85–90% yield was proposed. The acidity constant of the complex trans-[Ru(NO)(NH3)4(H2O)]3+ at room temperature (K a = (4 ± 1) × 10?2) was estimated by 14N NMR spectroscopy.  相似文献   

3.
A procedure that allows for solvation effects is suggested; it is designed for quantum chemical calculations of the electronic spectra of complex compounds. Based on Monte Carlo (MC) simulation of the solvation shell one can calculate the electrostatic potential created by the solvation shell at the sites of all atoms of the complex; appropriate corrections are added to the diagonal elements of the Fock matrix and to the matrix elements of the Hamiltonian in the configuration interaction method. The method suggested has been implemented based on the semiempirical (CINDO) version of the CI (configuration interaction) technique and tested on the following compounds: [Ru(NH3)5(py)]2+, [Ru(NH3)5(pyz)]2+, [Ru(bpy)(CN)4]2?, [Ru(NO)(py)4-NC-Ru(py)4(CN)]3+.  相似文献   

4.
The state of ruthenium in conjugated phases upon extraction of trans-[Ru(15NO)(15NO2)4(OH)]2? complex with tri-n-octylphosphine oxide (TOPO) in the presence of Zn2+ and subsequent back extraction with H15NO3 and NH3(concd.) solutions was studied by 15N NMR. Binuclear complexes [Ru(NO)(NO2)5?n (μ-NO2) n?1(μ-OH)Zn(TOPO) n ] and [Ru(NO)(NO2)4?n (ONO)(μ-NO2) n?1(μ-OH)Zn(TOPO) n ], where n = 2, 3, are predominant forms in extract. Kinetic restrictions for ruthenium extraction with TOPO solution in hexane and its back extraction with aqueous solutions of nitric acid and ammonia are eliminated in the absence of direct coordination of extractant to ruthenium. fac-Dinitronitrosyl forms [Ru(NO)(H2O)3(NO2)2]+, [Ru(NO)(H2O)2(NO2)2(NO3)]0 (3 and 6 M HNO3) and [Ru(NO)(H2O)(NO2)2(NO3)2]? (6 M HNO3) prevail in nitric acid back extracts. Equilibrium constant at ambient temperature (0.05 ± 0.01) was assessed for the coordination of second nitrate ion to nitrosylruthenium dinitronitrato complex. Complex species [Ru(NO)(NO2)4(OH)]2? and [Ru(NO)(NO2)3(ONO)(OH)]2? prevail in ammonia back extract.  相似文献   

5.
The nitrosation of [Ru(NH3)6]2+ in hydrochloric acid and alkaline ammonia media has been studied; the patterns of interconversion of ruthenium complexes in reaction solutions have been proposed. In both cases, nitrogen(II) oxide acts as the nitrosation agent. The procedure for the synthesis of [Ru(NO)(NH3)5]Cl3 · H2O (yield 75–80%), the main nitrosation product of [Ru(NH3)6]2+, has been optimized. Thermolysis of [Ru(NO)(NH3)5]Cl3 · H2O in a helium atmosphere has been studied; the intermediates have been identified. One of these products is polyamidodichloronitrosoruthenium(II) whose subsequent decomposition gives an equimolar mixture of ruthenium metal and dioxide. The structure of trans-[RuNO(NH3)4Cl]Cl2, formed in the second stage of thermolysis and as a by-product in the nitrosation of [Ru(NH3)6]Cl2, has been determined by X-ray diffraction.  相似文献   

6.
On Reactions of oxygenated Cobalt(II) Chelates. VI. Preparation of diastereoisomeric tetrakis(ethylenediamine)-μ-peroxo-μl-hydroxo-dicobalt(III) Perchlorates Oxygenation of Co(en)22+ leads to a mixture of two isomeric forms of [(en)2Co(O2, OH)-Co(en)2] (ClO4)3 · H2O from which the less soluble meso form can be readily crystallized. Further crystallization from the mother liquor yields the racemate ΔΔ/ΔΔ. The pure racemate may be obtained by either of the following methods: (a) By ligand exchange starting from mono bridged [(NH3)5CoO2Co(NH3)5] (NO3)4 or from doubly bridged [(SCN) (NH3)3Co(O2, OH)Co(NH3)3(SCN)] SCN · 2H2O. (b) By reaction of cis-[Co(en)2(OH2)2]3+ with H2O2. Reaction (b) proceeds via an intermediate cis-[Co(en)2(OOH) (OH2)] (ClO4)2 · H2O which at higher pH reacts with [Co(en)2(OH) (OH2)]2+ to yield the desired doubly bridged ΔΔ/ΔΔ tetrakis(ethylenediamine)-μ-peroxo-μ-hydroxodikobalt(III)-perchlorate.  相似文献   

7.
In the title complex salt, tetra­kis[hexa­ammine­cobalt(III)] hexa­chloro­cadmate(II) bis­[aqua­tetra­chloro­thio­cyanato­cad­mate(II)] dichloride dihydrate, the discrete ions, i.e. [Co(NH3)6]3+, Cl, [CdCl6]4− (located on an inversion centre) and [CdCl4(SCN)(H2O)]3−, together with cocrystallized water mol­ecules, are assembled by means of a network of hydrogen‐bonding inter­actions. This is the first X‐ray structure determination of a hexa­amminecobalt(III) salt with two different complex chloro­cadmium anions.  相似文献   

8.
Preparation and Characterization of the Pentammine Complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ The new pentammine complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ are prepared from the reaction of [Os(NH3)5(CF3SO3)](CF3 SO3)2 with NH4SCN and KSeCN, respectively, in acetone, and subsequent purification by ion exchange chromatography on carboxymethyl cellulose. Evidence of N-bonding in both cases is given by the vibrational spectra, indicating that Os3+ is in terms of Lewis acidity harder than Ru3+, Rh3+, and Ir3+. I.r. and Raman spectra are interpreted according to local C4v symmetry around Os, and the presumed assignments are confirmed by comparison with the i.r. spectra of the perdeuterated compounds. In the electronic spectra of both complexes charge transfer bands at 412 nm (NCS) and 498 nm (NCSe) are observed, respectively. Further weak absorptions near 4500 and 5100 cm?1, which are in correlation with electronic Raman bands, are assigned to intraconfigurational transitions within the 2T2g (Oh) ground term, split into three Kramers doubletts by spin-orbit coupling and lowered symmetry. Electrochemical measurements demonstrate a stabilisation of +III and +II oxidation states by π-back donation to —NCS and —NCSe ligands.  相似文献   

9.
The redox properties of a series of [Ru(phen)2(py)X]n+ cations (X = pyridine, NH3, Cl, Br, I, CN, SCN, N3 and NO2) have been investigated in acctonitrile. Two reversible reduction steps are seen at ? 1.35 and ? 1.6 V vs Ag/AgCl; the invariance of these processes with X-group is indicative of electron addition to molecular orbitals mainly of phenanthroline ligand π* origin. Irreversible multi-electron reductions follow below ? 2.20 V. The Ru(II)/Ru(III) couple is seen as a reversible wave near + 0.8 V vs the normal hydrogen electrode, from calibration with ferrocene, except in the cases of the NO2 and SCN complexes, where rapid reactions involving these ligands occur.  相似文献   

10.
The solid reaction between [Cr(NH3)6]X3(X? = Cl, I, SCN and NO3) and L-α-alanine was studied under continuous rise in temperature and isothermal heating. Under continuous rise in temperature, the main products were [Cr(NCS)3-(NH3)3] (X? = NCS) and [Cr(L-ala)3] (X? = NO3), when [Cr(NH3)6]Cl3 and [Cr(NH3)6]I3 as starting complexes were used; in both cases only the decomposition proceeds. Under isothermal heating at 150°C the main products were [CrCl(NH3)5]-Cl2 (X? = Cl), [Cr(NH3)6]I2 (X? = I), [Cr(NCS)3(NH3)3] (X? = SCN) and [Cr(L-ala)3] (X? = NO3). In those matrix reactions, the ease of anion coordination was: SCN? > Cl? > I? > alanine. For the synthesis of tris(alaninato)chromium(III) complex the most desirable starting complex was [Cr(NH3)6](NO3)3.The solid state reaction between [Cr(en)3]X3 type complexes and NH4X (X? = F, Cl, Br, I and SCN), KX (X? = Cl, Br and I), and NaSCN have been reported by Wendlandt and Stembridge1. They reported that the reaction product in most cases, was cis-[Cr(en)2Y2]X, where Y and X are the same or different anions, depending upon the matrix material employed and the thermal matrix method appears to be a useful new route for the synthesis of bis(ethylendiamine(chromium(III) complexes.In the previous paper2, the solid state reaction between [Cr(NH3)6](NO3)3 and L-amino acids has been utilized in the preparation of tris(amino acidato)chromium(III) complexes. The preparation of [Cr(L-ala)3] by the solid state reaction between [Cr(NH3)6](NO3)3 and L-alanine have been reported. No studies on the effect of the counter-ion have been reported.In this paper, various hexaamminechromium(III) complexes, [Cr(NH3)6]X3 (X? = Cl, I, SCN and NO3), were heated with L-α-alanine under continuous rise in temperature and under isothermal heating at 150°C for studies on the ease of anion coordination. It will seen that the anion which replaces the ammonia in the hexaamminechromium(III) complex comes from either the alanine or counter-ion.  相似文献   

11.
Geometrical structures of nitroso complexes trans- [Ru(NO)(NH3)4(Cl)]2+, trans-[Ru(NO)(NH3)4(H2O)]3+, [Ru(NO)(Cyclam)(Cl)]2+(Cyclam is 1,4,8,11-tetraazocyclodecane), and [Ru(NO)(Bipy)2(Cl)]2+ (Bipy is 2,2-bipyridine) are optimized using the density functional method. The potential energy surface of all four complexes was found to contain local minima corresponding to a stable state with the 1-coordination of NO through the N atom and to two metastable isomers with the 1-O and 2-NO coordination. For [Ru(NO)Cl5)]2-, trans-[Ru(NO)(NH3)4(Cl)]2+, and trans-[Ru(NO)(NH3)4(H2O)]3+, the lowest electronically excited triplet states are calculated, as well as the reduced complexes with one additional electron. It is shown that the electron excitation and reduction are accompanied by bending of the RuNO group with a substantial elongation of the Ru-O and N-O bonds, which makes this group unstable. These processes do not cause any significant changes in the metal or in the nitroso ligand oxidation states because of the electron density delocalization in the RuNO group.Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 1, 2005, pp. 32–42.Original Russian Text Copyright © 2005 by Sizova, Lubimova.  相似文献   

12.
Density functional calculations with the B3LYP functional were carried out for the [Ru(NO)Cl5]2−, [Ru(NO)(NH3)5]3+, [Ru(NO)(CN)5]2−, [Ru(NO)(CN)5]3−, [Ru(NO)(hedta)]q (hedta = N-(hydroxyethyl)ethylenediaminetriacetate triple-charged anion; q = 0, −1, −2), Rh2(O2CR)4, Rh2(O2CR)4(NO)2, Ru2(O2CR)4, Ru2(O2CR)4(NO)2, Ru2(dpf)4, and Ru2(dpf)4(NO)2 (dpf = N,N′-diphenylformamidinate ion; R = H, CH3, CF3) complexes. The electronic structure was analyzed in terms of Mayer and Wiberg bond order indices. The technique of bond order indices decomposition into σ-, π-, and δ-contributions was proposed.  相似文献   

13.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

14.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

15.
The B3LYP method in the LanL2DZ basis set was used to carry out geometry optimization for the binuclear bridged complexes [RuCl4(NO)(μ-Pyz)Ru(P)(CO)]?, [Ru(Bipy)2(NO)(μ-Pyz)Ru(NH3)5]5+, and [(NC)Ru(Py)4(μ-CN)Ru(Py)4NO]3+ (Pyz is pyrazine). The electronic spectra of the complexes were calculated by the TDDFT and CINDO-CI methods with allowance for solvation effects. The ground-state electronic configurations of the two ruthenium atoms in these compounds were shown to be different. Among the lower excited states of all complexes, states with essentially weakened Ru-NO bonds were found. The strong absorption in the visible region of the spectrum of [Ru(Py)4NO-CN-Ru(Py)4CN]3+ is due to the interfragment electron transfer RuII → {RuNO} accompanied by weakening of the bond between nitrogen oxide and the complex.  相似文献   

16.
Double complex salts (DCSs) with [M(NH3)5Cl]2+ (M = Rh, Ir, Co, Cr, Ru) cations and [PtBr4]2? anions were prepared in high yields. The salts were two-phase mixtures of the anhydrous and monohydro DCSs. Anhydrous analogues containing [PdBr4]2? anions with M = Cr or Ru were synthesized. All the compounds were characterized using a set of physicochemical methods. The crystal structure of chloropentaamminechromium(III) tetrabromopalladate(II) was solved: space group Pnma, Z = 4, a = 17.068(2) Å, b = 8.315(12) Å, c = 9.653(14) Å. The [M(NH3)5Cl][M′X4] (M = Rh, Ir, Co, Cr, Ru; M′ = Pd, Pt; X = Cl, Br) compounds were shown to be isostructural. The [M(NH3)5Cl][PtBr4] · H2O monohydrates are isostructural to the [M(NH3)5Cl][PdCl4] · H2O monohydrates (space group P21/c, z = 4). The properties of the compounds were comparatively analyzed. The tendencies of the thermal stability of the complexes were elucidated. The thermolysis products of the double complex salts obtained under a helium or hydrogen atmosphere were studied.  相似文献   

17.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

18.
The electronic structure of the ground and excited states of the binuclear mixed-valence complex [Ru(NH3)5]2(4,4’-bipy)5+ is calculated by the semiempirical INDO + CI method, and an electronic spectrum assignment is given. A theoretical model of electron transfer between the Ru(II) and Ru(III) metal centers is constructed on the basis of many-electron wave functions. The dependence of the electron transfer characteristics on the angles between the planes of the pyridine rings and also between the pyridine rings and the planes of cis(NH3)-Ru-cis(NH3) is analyzed. Translated fromZhumal Struktumoi Khimii, Vol. 38, No. 3, pp. 447–456, May–June, 1997.  相似文献   

19.
Five novel heterobimetallic compounds [Cu(bpzm)2Hg(SCN)4]n (1), [Cu(bdmpzm)2(μ-SCN)Hg(SCN)3] (2), [Cu(pybzim)2(μ-SCN)Hg(SCN)3]·H2O (3), [Cu(bipy)2(μ-SCN)Hg(SCN)3][Cu(bipy)2(μ-SCN)2Hg(SCN)2] (4) and [Cu(bipy)(NCS)]2[Hg(SCN)4] (5) have been synthesized and structurally characterized (bpzm-bis(pyrazol-1-yl)methane, bdmpzm-bis(3,5-dimethylpyrazol-1-yl)methane, pybzim-2-(2-pyridyl)benzimidazole, phen-1,10-phenantroline and bipy-2,2′-bipyridine). The compounds 2, 3, 4 and 5 are molecular complexes, whereas 1 is an alternating 1-D zigzag chain of [Cu(bpzm)2]2+ and Hg(SCN)4]2− moieties in which the metal atoms are bridged via thiocyanate ions. The polymer 1 has been studied by magnetic measurement.  相似文献   

20.
Abstract

In the mixed-valence complex [RuIII(NH3)5(μ-dpypn)FeII(CN)5] with the flexible bridging ligand 1,3-di(4-pyridyl)propane (dpypn), electrostatic interactions between the {Ru(NH3)5}3+ and {Fe(CN)5}3? moieties drive a strong bending of dpypn and approximation of the RuIII and FeII centers, from which the enhanced electronic coupling between metal ions produces an intense intervalence-transfer absorption in the near-infrared region. Density functional theory calculations corroborate both the electrostatic bending in this heterobinuclear complex and a linear geometry in the homobinuclear counterparts [Ru(NH3)5(μ-dpypn)Ru(NH3)5]5+ and [Fe(CN)5(μ-dpypn)Fe(CN)5]5?, for which no evidence of electronic coupling was found because of the separation between metal centers. Furthermore, the heterobinuclear species formed an inclusion complex with β-cyclodextrin where the imposed linear geometry prevents significant electronic coupling and intervalence charge transfer between the RuIII and FeII centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号