首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palladium complexes containing 2,7-bis(mesitylimidazolylidenyl)naphthyridine (NHC-NP) have been synthesized and characterized. Reaction of [{Ag(3)(NHC-NP)(2)}(PF(6))(3)] with [Pd(PhCN)(2)Cl(2)] provided an unusual dipalladium complex bridged by two NHC-NP units, forming a 20-membered dinuclear metallacycle [{Pd(2)(NHC-NP)(2)Cl(2)}(PF(6))] (2) in high yield. Treatment of 2 with KI in acetone yielded a neutral species [Pd(2)(NHC-NP)I(4)] (3). Meanwhile, the pyridinyl N-heterocyclic carbene (NHC-Py) precursor, 1-(2-pyridinyl)-3-mesitylimidazolium chloride, reacted with Pd(2)(dba)(3) directly to form the mononuclear palladium complex [Pd(NHC-Py)Cl(2)] (4). These complexes were characterized by elemental analyses as well as NMR spectroscopy, and the structures of 3 and 4 were further identified by X-ray diffraction analysis. The use of these palladium complexes for Suzuki-Miyaura and Kumada-Corriu coupling reactions has been examined. There is no significant difference in catalytic activities between 2 and 4 in Suzuki-Miyaura coupling reactions. However, the catalytic activity of 2 in the Kumada-Corriu coupling of ArBr with cyclohexylmagnesium bromide is quite different from that of 4. Thus complex 2 is active for the cross coupling, but complex 4 is active for the reduction of aryl halides.  相似文献   

2.
Summary When platinum(II) chloride dissolved in acetic acid containing concentrated hydrochloric acid was refluxed withN-phenylpyrazole(liphpz) andN-(p-tolyl)pyrazole (Htlpz), complexes of composition [Pt(N-C)Cl]2 (N-C = phpz, tlpz) were obtained, in which phpz and tlpz are coordinated through nitrogen and carbon forming a five membered metallocycle. Similar palladium(II) complexes [Pd(N-C)Cl]2 were easily prepared by the reaction of palladium(II) chloride with Hphpz and Htlpz in methanol in the presence of lithium chloride. These [M(N-C)CI]2 complexes reacted with tri-n-butylphosphine (PBu3) and pyridine (py) to give the adducts [M(N-C)ClL](L = PBu3, py). Ethylenediamine(en) and acetylacetone(Hacac) gave IPd(phpz)(en)]Cl and [Pd(phpz)(acac)] respectively. These new complexes are characterized by means of1H-n.m.r. and i.r. spectra, and probable structures are proposed.Reprints of this article are not available.  相似文献   

3.
A series of palladium(II) and platinum(II) complexes possessing pentafluorophenyl ligands of the general formula [M(L-L)(C6F5)Cl][space](M = Pd 3; L-L=tmeda (N,N,N',N',-tetramethylethylenediamine) a; 1,2-bis(2,6-dimethylphenylimino)ethane) b; dmpe (1,2-bis(dimethylphosphino)ethane) c; dcpe (1,2-bis(dicyclohexylphosphino)ethane) d; Pt ; L-L=tmeda a; 1,2-bis[3,5-bis(trifluoromethyl)phenylimino]-1,2-dimethylethane b; dmpe c; dcpe d) were readily synthesized from the dimer [M(C6F5)(tht)(mu-Cl)2] (M=Pd 1b, Pt 2b; tht=tetrahydrothiophene) and the corresponding bidentate ligand. In the case of palladium, the corresponding iodo analogues (6a-c) were readily synthesized in a one-pot reaction from [Pd2(dba)3], iodopentafluorobenzene, and the appropriate ligand. The platinum complexes 4c-d were then converted to the water complexes [Pt(L-L)(C6F5)(OH2)]OTf (L-L =dmpe 7a; dcpe 7b)via reaction with AgOTf in the presence of water. Attempts to convert the palladium complexes 3c-d to the corresponding water complexes resulted in the disproportionation of the intermediate water complex to form [Pd(L-L)(C6F5)2] (L-L=dmpe 8) or [Pd(L-L)2][OTf]2(L-L=dcpe 9). Upon standing in solution for prolonged periods, complex 7a undergoes an identical disproportionation reaction to the Pd analogues to form [Pt(L-L)(C6F5)2] (L-L=dmpe 10). Complexes 4c and 4d were converted to the corresponding hydrides (11b-c, respectively) using two different hydride sources: 11a was formed by the reaction of with NaBH4 in refluxing THF, while 11b was synthesized in near quantitative yield using [Cp2ZrH2] in refluxing THF. Attempts to synthesize eta2-tetrafluorobenzyne complexes [Pt(L-L)(C6F4)] (L-L=dmpe, dcpe) from reaction of 11a-b with butyllithium were unsuccessful. The molecular structures of 3a,4a, 4c, 4d, 6b, 7a, 8, 11b and have been determined by X-ray crystallographic studies, and are discussed.  相似文献   

4.
The new complexes [Pd(dmba)( N10-9AA)(PPh 3)]ClO 4 ( 1), [Pt(dmba)( N9-9AA)(PPh 3)]ClO 4 ( 2), [Pd(dmba)( N10-9AA)Cl] ( 3), and [Pd(C 6F 5)( N10-9AA)(PPh 3)Cl] ( 4) (9-AA = 9-aminoacridine; dmba = N,C-chelating 2-(dimethylaminomethyl)phenyl) have been prepared. The crystal structures have been established by X-ray diffraction. In complex 2, an anagostic C-H...Pt interaction is observed. All complexes are luminescent in the solid state at room temperature, showing important differences between the palladium and platinum complexes. Complex 2 shows two structured emission bands at high and low energies in the solid state, and the lifetimes are in agreement with excited states of triplet parentage. Density functional theory and time-dependent density functional theory calculations for complex 2 have been done. Values of IC 50 were also calculated for the new complexes 1- 4 against the tumor cell line HL-60. All of the new complexes were more active than cisplatin (up to 30-fold in some cases). The DNA adduct formation of the new complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the complexes on plasmid DNA pB R322 were also obtained.  相似文献   

5.
The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH(2)CMe(2) (a), the bidentate N-(2-aminoethyl)aziridines C(2)H(4)NC(2)H(4)NH(2) (b) or CH(2)CMe(2)NCH(2)CMe(2)NH(2) (c) as well as the unsaturated azirine NCH(2)CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [μ-Cl(C(6)H(4)CHMeNMe(2)-C,N)Pd](2) with ligand a yielded compound [Cl(NHCH(2)CMe(2))(C(6)H(4)CHMe(2)NMe(2)-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl(2)Pd(HNC(2)H(4))(2)] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C(2)H(4)NC(2)H(4)NH(2)-N,N')(2)Pd](OTf)(2) (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines ("aziridine dimerization"). CuCl(2) reacted in pure HNC(2)H(4) or HNCH(2)CMe(2) (b) again by "dimerization" to give the tris-chelated ionic complex [Cu(C(2)H(4)NC(2)H(4)NH(2)-N,N')(3)]Cl(2) (3b) or the bis-chelated complex [CuCl(C(2)H(2)Me(2)NC(2)H(2)Me(2)NH(2)-N,N')(2)]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl(2), trans-[Cl(2)Pd(NCH(2)CPh)(2)] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5-300.0 μg mL(-1). However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 μg mL(-1). The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria.  相似文献   

6.
The structures of the ternary palladium(II) complexes of the formulations [Pd(Gly)(bpy)](+)Cl(-).4H(2)O (Gly=glycine; bpy=2,2'-bipyridine) (1), [Pd(Gly)(phen)](+)Cl(-).4H(2)O (2) (phen=1,10-phenanthroline) and {[Pd(Gly)(bpa)](+)Cl(-)}(2).6H(2)O (3) (bpa=2,2'-bipyridylamine) were determined. All complexes are positively charged and neutralized by the chloride anion located nearby the complexes. The central Pd(II) atoms of the complexes 1, 2 and 3 have a similar distorted square planar coordination geometry, in which each Pd(II) atom is coordinated to two N atoms of the bidentate heterocyclic ligand, and N and O atoms of the bidentate glycine ligand. The interaction of the complexes with calf thymus (CT) DNA was also studied using the fluorescence method. All complexes showed the inhibition of ethidium bromide binding to CT DNA, and the DNA-binding strengths were reflected as the relative order 2>1>3. The remarkable reduction of UV absorption intensity of 2 caused in the presence of DNA suggests the presence of pi-pi stacking interaction between the heterocyclic ring of the phen ligand and nucleobases. The intercalative DNA-binding of 2 is suggested by UV and CD measurements. DNA cleavage studies indicated that the cleavage of the plasmid supercoiled pBR322 DNA in the presence of H(2)O(2) and ascorbic acid could be enhanced by the complexes.  相似文献   

7.

The mode of coordination of complexes formed in the systems Cd(II) or Hg(II)/cytidine/di- or triamine is proposed on the basis of equilibrium and spectroscopic studies. Mercury(II) binds much more strongly to cytidine and polyamine (PA) than cadmium. It was found from equilibrium and 13 C NMR studies that in the Hg(II) and Cd(II)/ Cyd /di- or triamine complexes, metallation mainly involves the N(3) atom of the pyrimidine base of the nucleoside and m NH x + groups from PA. In MLL' complexes of both metals with diamines, all available donor nitrogen atoms of the polyamine are involved in coordination. In analogous systems with triamines, interaction of all nitrogen atoms is observed for Cd(II) systems as well as in the Hg( Cyd )(2,3- tri ) species. Only two nitrogen atoms of the polyamine coordinate in ternary Hg(II) complexes with dien, 3,3-tri and Spd .  相似文献   

8.
Three bidentate, mixed-donor ligands based on a triphenylphosphine unit bearing a pyrazole group in the ortho-position of one phenyl ring have been synthesised; the N,P ligand [2-(3-pyrazolyl)phenyl]diphenylphosphine pzphos has been synthesised and transformed into new N,P(O) and N,P(S) derivatives, [2-(3-pyrazolyl)phenyl]diphenylphosphine oxide pzphos(O) and [2-(3-pyrazolyl)phenyl]diphenylphosphine sulfide pzphos(S), respectively. The coordination chemistry of pzphos and pzphos(O) towards palladium(II) has been investigated. Depending on the ligand to metal molar ratio employed in the reactions of palladium(II) with pzphos, either the 1 : 1 chelate [Pd(pzphos)Cl2] 1a or the 2 : 1 N,P chelate [Pd(pzphos)2]Cl2 1b was obtained. 1b contains two six-membered chelate rings in which the chlorides have been displaced from the inner coordination sphere of palladium. Exchange of the chloride anions in 1b for perchlorate anions was achieved using AgClO4 to give [Pd(pzphos)2][ClO4]2 1c. Reaction of pzphos(O) under the same conditions forms the 2 : 1 adduct [Pd(pzphos(O))2Cl2] 2b regardless of the metal to ligand ratio or the order of addition of reactants. Unlike the N,P chelate 1b, the N,P(O) ligands in complex 2b bind in a monodentate fashion through the N-donor atoms of the pyrazole rings. Abstraction of the chloro ligands in compound 2b using AgClO4 gave the 2 : 1 N,P(O) chelate [Pd{pzphos(O)}2][ClO4]2 2c, in which entropically unfavourable 7-membered chelate rings are formed. X-Ray diffraction has been used to confirm the solid-state structures of the pzphos(O) ligand and the complexes 1b, 1c, 2b and 2c.  相似文献   

9.
Monophosphaferrocenes and 4 react with [Pd(COD)Cl2] (COD = cyclooctadiene) to afford cis- [Pd(1 or 4)2Cl2] complexes that slowly decompose in solution to give dimeric complexes 3 and 6 of general formula [[Pd(1 or 4)Cl]2]. In these dimers, which incorporate a Pd-Pd bond, phosphaferrocenes act as four electron donors through the phosphorus-atom lone pair (mu2-bonded) and through one orbital of appropriate symmetry at iron. These dimers can also be more conventionally prepared from the reaction of cis- [Pd(1 or 4) Cl2] complexes with [Pd(dba)2] (dba = dibenzylidene acetone). The reaction of octaethyldiphosphaferrocene (7) with [Pd(COD)Cl2] yields a dinuclear complex [Pd2(7)2Cl4] (8) in which the two ligands 7 are coordinated in a trans fashion through the phosphorus-atom lone pairs. Decomposition of 8 in solution yields a dimeric dicationic complex of general formula [[Pd2(7)2Cl]2]2+[FeCl4]2- (9a) incorporating four palladium atoms. In each ligand. one phospholyl ring behaves as a two-electron donor through the phosphorus-atom lone pair whereas the second binds two palladium centers in a mu2-fashion. A plausible mechanism that explains the formation of dimers 3, 6, and 9a involves the preliminary oxidation of the mono- or diphosphaferrocene ligand. Parallel experiments aimed at confirming this hypothesis have shown that complex 9a can be synthesized from the reaction of FeCl2 with complex 8. Also presented is another synthetic approach to the synthesis of the tetranuclear complex 9b (counterion is GaCl4-) from the reaction of the palladium(0) complex [Pd(7)2] (10) with [Pd(COD)Cl2] the presence of GaCl3 as chloride abstractor.  相似文献   

10.
The synthesis of the benzyl phosphinothioether derivatives Ph(2)PCH(2)CH(Et)SR and their corresponding palladium complexes are reported, where R = CH(2)Ph, R = CH(2)-3,5-Me-C(6)H(3) and R = 1-CH(2)C(10)H(7)(5). Crystallographic data obtained for the complexes Pd(3)Cl(2) and Pd(4)Cl(2) show intra- and inter-molecular pi-pi interactions between the aromatic rings on the P and S substituents, and NOE experiments for Pd(4)Cl(2) show that these interactions persist in solution. The performance of the phosphinothioether palladium complexes in aryl-aryl cross-coupling reactions is compared with that of the corresponding complex of the parent phosphinothiolato ligand Ph(2)PCH(2)CH(Et)S(-)(1). High turnover numbers up to 2000000 are reported for the coupling of bromobenzene, using the palladium dimer [Pd(1)I](2) as the catalyst precursor. Kinetic studies show a linear dependence of the reaction on catalyst loading. The effect of other variables on the cross-coupling reaction, such as temperature, solvent and base, is also reported.  相似文献   

11.
The ionic complexes [Pd(NP 3)X]X [NP 3 = tris[2-(diphenylphosphino)ethyl]amine, X = Cl (1), Br(2)] and [M(PP 3)X]X [PP 3 = tris[2-(diphenylphosphino)ethyl]phosphine, M = Pd, X = Cl (3), Br(4); M = Pt, X = Cl (5), Br (6)] contain square pyramidal (1, 2) and trigonal bipyramidal (3- 6) cations with three fused chelate rings to M and one M-X bond. By addition of AgX salts (X = Cl, Br, NO 3) an unexpected ring-opening reaction occurs with formation of the heteronuclear species PdAg(NP 3)X 3 [X = Cl (7), Br (8)], MAg(PP 3)X 3 [M = Pd, X = Cl (9), Br (10), NO 3 (13);M = Pt, X = Cl (11), Br (12), NO 3 (14)]. The complexes have been characterized in the solid state and solution. The X-ray crystal structures of 9 and 13 reveal a distorted square-planar arrangement to Pd(II) that is coordinated to three P of PP 3 (the central and two terminal atoms) and to one chloride (9) or one oxygen atom of NO 3 (13). The resultant dangling phosphorus of the ring opening is bound to Ag(I) that completes the three- [PAgCl 2 ( 9)] and four-coordination [PAg(ONO 2)(O 2NO) (13)] through the donor atoms of the anions with the nitrates in 13 unusually acting as both mono- and bidentate ligands. Complexes 7, 8, 10, and 11 undergo oligomerization in solution. Complex 10 oligomerizes giving rise to the ionic compound [Pd 4Ag 2(PP 3) 2 Br 9]Br ( 10a) whose X-ray crystal structure indicates the presence of cations with a Pd(mu-Br) 3Pd unit that connects via bromide bridges two BrPdP 2PPAg Br 2 fragments containing distorted square-planar and trigonal-planar Pd(II) and Ag(I) centers, respectively. The palladium(II) metal centers in the central unit afford the five-coordination (PdBr 5) with a distorted trigonal bipyramidal geometry. The ionic system [Pt 2Ag 2(PP 3) 2 Cl 5]Cl (11a) consists of chloride anions and heteronuclear monocations. The X-ray crystal structure reveals that the cations contain two distorted square-planar ClPtP 3 units bridged by one PAgCl(mu-Cl) 2AgP fragment that is bearing tetrahedral (PAgCl 3) and trigonal planar PAgCl 2 silver(I) centers. Further additions of the corresponding AgX salts to complexes 7- 14 did not give rise to any new ring-opening reaction.  相似文献   

12.
The reaction of the pentapeptide Ac-His1-Ala2-Ala3-Ala4-His5-NH2 (AcHAAAHNH2) (1) with [Pd(en)(ONO2)2] (en = NH2CH2CH2NH2) in either DMF-d(7) or H2O:D2O (90%:10%) gave three linkage isomers of [Pd(en)(AcHAAAHNH2)](2+) (2), 2a, 2b, and 2c, which differ only in which pair of imidazole nitrogen atoms bind to Pd. In the most abundant isomer, 2a, Pd is bound by N1 from each of the two imidazole rings. In the minor isomers 2b and 2c, Pd is bound by N1(His1) and N3(His5) and by N3(His1) and N1(His5), respectively. The reactions of [Pd(en)(ONO2)2] with the N-methylated peptides Ac-(N3-MeHis)-Ala-Ala-Ala-(N3-MeHis)-NH2 (AcH*AAAH*NH2) (3), Ac-(N3-MeHis)-Ala-Ala-Ala-(N1-MeHis)-NH2 (AcH(*)AAAH(#)NH2) (4), and Ac-(N1-MeHis)-Ala-Ala-Ala-(N3-Me-His)-NH2 (AcH(#)AAAH(*)NH2) (5) each gave a single species [Pd(en)(peptide)](2+) in N,N-dimethylformamide (DMF) or aqueous solution, 7, 8, and 9, respectively, with Pd bound by the two nonmethylated imidazole nitrogen atoms in each case. These complexes were analogous to 2a, 2b, and 2c, respectively. Ac-(N1-MeHis)-Ala-Ala-Ala-(N1-MeHis)-NH2 (AcH(#)AAAH(#)NH2) (6) with [Pd(en)(ONO2)2] in DMF slowly gave a single product, [Pd(en)(AcH(#)AAAH(#)NH2)](2+) (10), in which Pd was bound by the N3 of each imidazole ring. The corresponding linkage isomer of 2 was not observed. Complex 10 was also the major product in aqueous solution, but other species were also present. All compounds were exhaustively characterized in solution by multinuclear 1D ((1)H , (13)C, and, with (15)N-labeled ethylenediamine, (15)N) and 2D (correlation spectroscopy, total correlation spectroscopy, transverse rotating-frame Overhauser effect spectroscopy (T-ROESY), heteronuclear multiple-bond correlation, and heteronuclear single quantum coherence) NMR spectra, circular dichroism (CD) spectra, electrospray mass spectroscopy, and reversed-phase high-performance liquid chromatography. ROESY spectra were used to calculate the structure of 2a, which contained a single turn of a peptide alpha helix in both DMF and water, the helix being better defined in DMF. The Pd(en)(2+) moiety was not used in structure calculations, but its location and coordination by one imidazole N1 from each histidine to form a 22-membered metallocycle were unambiguously established. Convergence of the structures was greatest when calculated with two hydrogen-bond constraints (Ala4 peptide NH...OC acetyl and His5 peptide NH...OC-His1) that were indicated by the low temperature dependence of these NH chemical shifts. Vicinal HN-CHalpha coupling constants and chemical shifts of alpha-H atoms were also consistent with a helical conformation. Similar long-range ROE correlations were observed for [Pd(en)(AcH(*)AAAH(*)NH2)](2+) (7), which displayed a CD spectrum in aqueous solution that suggested the presence of some helicity. Long-range ROE correlations were not observed for 8, 9, or 10, but a combination of NMR data and CD spectroscopy was interpreted in terms of the conformational behavior of the coordinated pentapeptide. Only for the linkage isomer [Pd(en)(AcH(*)AAAH(#)NH2)](2+) (8) was there evidence of a contribution from a helical conformation. The data for 8 were interpreted as interconversion between the helix and random coil conformations. Zn(2+) with peptides gave broad NMR peaks attributed to lability of this metal ion, while reactions of cis-[Pt(NH3)2(ONO2)2] were slow, giving a complex mixture of products rather than the macrochelate ring observed with Pd(en)(2+). In summary, these studies indicate that Pd(en)(2+) coordinates to histidine with similar preference for each of the two imidazole nitrogens, enabling the formation of up to four linkage isomers in its complexes with pentapeptides His-xxx-His. Only the N1-N1 linkage isomer that forms a 22-membered macrochelate ring is able to induce an alpha-helical peptide conformation, whereas the 20- and 21-membered rings of linkage isomers do not. This suggests that linkage isomeric mixtures may compromise histidine coordination to metal ions and reduce alpha-helicity.  相似文献   

13.
The 3-phenyl-2-(pyridin-2-yl)oxazolidine ligand (ppo) was synthesised and its coordination behaviour regarding Ni(II) and Pd(II) centres was studied. The reaction with K(2)PdCl(4) affords [Pd(N,N'-ppo)Cl(2)] (1), in which ppo binds to palladium via the pyridyl nitrogen and the oxazolyl nitrogen atoms. On the contrary, reaction with NiCl(2)·6H(2)O produces [Ni(N,O-ppo)(2)Cl(2)] (2), in which two ppo ligands are coordinated via the pyridyl nitrogen and the oxygen atom of the oxazolidine ring. The X-ray diffraction analysis of the complexes confirms a square planar geometry for Pd(II) in 1 and an octahedral configuration around Ni(II) in 2, which, to the best of our knowledge, represents the first reported example of a structurally characterised nickel-oxazolidine compound. In addition, both complexes prove to be active catalysts under mild conditions in the aza-Michael reaction of (E)-4-phenylbut-3-en-2-one (benzalacetone) with aliphatic amines.  相似文献   

14.
The new phosphinite and phosphonite complexes (1-8) are very efficient catalysts for the methoxycarbonylation of iodobenzene and Heck cross-coupling of bromobenzene with butyl acrylate. High catalytic activity of these complexes can be explained by their in situ transformations during the reaction, stimulated by the presence of water, acid (HCl) or base (NEt(3)). Hydrolysis of phosphinite palladium complexes of the form trans-PdCl(2)[PPh(2)(OR)](2) (R = C(6)F(5), 2, (t)Bu 3, or O-menthyl 4) results in the formation of the dimeric complex [mu-ClPd(PPh(2)OH)(PPh(2)O)](2) 5, which is deprotonated by NEt(3), producing a polymeric complex of formula [Pd(P(O)PPh(2))(2)](n) 8. The reverse reaction, protonolysis of 8 with HCl, leads back to 5 and the monomeric complex 5a. The phosphinite complex PdCl(2)[PPh(2)(OBu)](2)1 with a more lipophilic ligand, PPh(2)(OBu), does not undergo hydrolysis under the same conditions. In the reaction of PdCl(2)(cod) with P(OPh)(2)(OH), the new dimer [mu-ClPd(P(OPh)(2)OH)(P(OPh)(2)O)](2) 6 was obtained, whereas reaction of Pd(OAc)(2) with P(OPh)(2)(OH) leads to the polymeric complex [Pd[P(O)(OPh)(2)](2)](n) 7. Protonolysis of 7 with HCl results in the formation of 6.  相似文献   

15.
Metal Complexes of Biologically Important Ligands. CXXVI. Palladium(II) and Platinum(II) Complexes with the Antimalarial Drug Mefloquine as Ligand The coordination sites of the antimalarial drug mefloquine (L) were studied. Reactions of the chloro bridged complexes (allyl)Pd(μ‐Cl)2Pd(allyl) and (R3P)(Cl)M(μ‐Cl)2M(Cl)(PR3) (M = Pd, Pt) with racemic mefloquine give the compounds (allyl)(Cl)Pd(L) ( 1 ), Cl2(Et3P)Pt(L) ( 2 ) and Cl2(Et3P)Pd(L) ( 3 ) with coordination of the piperidine N atom of mefloquine. In the presence of NaOMe the N,O‐chelate complexes Cl(Et3P)Pt(L–H+) ( 4 ) and Cl(R3P)Pd(L–H+) ( 5 , 6 , R = Et, nBu) were obtained. Protection of the piperidine N atom of mefloquine by protonation allows the synthesis of the complexes Cl2(Et3P)Pt(L + H+) ( 7 ) in which mefloquine is coordinated via the quinoline N atom. The structures of 2 , 3 and 4 were determined by X‐ray diffraction analysis. In the crystal of 4 pairs of enantiomers are found which are linked by two hydrogen bridges between the amine group and the chloro ligand.  相似文献   

16.
The palladium(II) and platinum(II) bis-homoleptic complexes M(C&arcraise;N)(2), where C&arcraise;N is benzo[h]quinoline (H-bhq), 2-phenylpyridine (H-phpy), 2-(2'-benzothienyl)pyridine (H-bthpy), 2-(2'-thienyl)quinoline (H-thq), and 2-(2'-thienyl)pyridine (H-thpy), were prepared by metal exchange of the lithiated ligands C&arcraise;N with M(Et(2)S)(2)Cl(2). The palladium(II) bis-heteroleptic complexes, Pd(C&arcraise;N)(C'&arcraise;N'), were synthesized from Pd(C&arcraise;N)(2) bis-homoleptic complexes, which were converted by HCl into the dichloro-bridged compounds [Pd(C&arcraise;N)Cl](2). By addition of Et(2)S, the Pd(C&arcraise;N)(Et(2)S)Cl complexes were formed, which were allowed to react with Li(C'&arcraise;N'), yielding M(C&arcraise;N)(C'&arcraise;N') compounds. An alternative way for obtaining the bis-heteroleptic molecules is by ligand exchange, according to the equilibrium M(C&arcraise;N)(2) + M(C'&arcraise;N')(2) = 2M(C&arcraise;N)(C'&arcraise;N'). The crystal structures of Pt(bhq)(2) (1) and Pt(thq)(2) (3) present an important distortion of the square planar (SP-4) geometry toward a two-bladed helix. Bis-homoleptic and some bis-heteroleptic complexes of palladium(II) have also been synthesized. In both cases, the steric interactions between the two ligands cause again a helical distortion rather than yielding trans compounds. For cis-bis(benzo[h]quinoline)platinum(II) (1), in the crystal (monoclinic, space group P2(1)/n, a = 13.728(3) ?, b = 6.9537(15) ?, c = 19.701(5) ?, beta = 106.17(2) degrees, Z = 4, rho(calcd) = 2.028 g.cm(-)(3); diffractometer measurements, block-matrix least-squares refinement, R = 0.043, R(w) = 0.047) the average Pt-N and Pt-C distances are 2.151(6) and 1.988(7) ?, respectively. One benzo[h]quinoline ligand is significantly less planar than the other. For cis-bis[2-(2'-thienyl)quinoline]platinum(II) (3), in the crystal (trigonal, space group P3(2)21, a = b = 9.373(1) ?, c = 20.152(3) ?, Z = 3, rho(calcd) = 2.022 g.cm(-)(3); diffractometer measurements, full-matrix least-squares refinement, R = 0.010, R(w) = 0.010) the molecule has C(2) symmetry and is chiral. The Pt-N and Pt-C bond lengths are 2.156(2) and 1.984(3) ?, respectively. The quinoline moitey is not planar but bent about the fused bond by 6.8 degrees. The thiophene moiety is inclined to the best plane through the quinoline moiety by 24.4 degrees.  相似文献   

17.
A zwitterionic palladium complex [[Ph(2)BP(2)]Pd(THF)(2)][OTf] (1) (where [Ph(2)BP(2)] = [Ph(2)B(CH(2)PPh(2))(2)](-)) reacts with trialkylamines to activate a C-H bond adjacent to the amine N atom, thereby producing iminium adduct complexes [Ph(2)BP(2)]Pd(N,C:eta(2)-NR(2)CHR'). In all cases examined the amine activation process is selective for the secondary C-H bond position adjacent to the N atom. These palladacycles undergo facile beta-hydride elimination/olefin reinsertion processes as evident from deuterium scrambling studies and chemical trap studies. The kinetics of the amine activation process was explored, and beta-hydride elimination appears to be the rate-limiting step. A large kinetic deuterium isotope effect for the amine activation process is evident. The reaction profile in less polar solvents such as benzene and toluene is different at room temperature and leads to dimeric [[Ph(2)BP(2)]Pd](2) (4) as the dominant palladium product. Low-temperature toluene-d(8) experiments proceed more cleanly, and intermediates assigned as [Ph(2)BP(2)]Pd(NEt(3))(OTf) and the iminium hydride species [[Ph(2)BP(2)]Pd(H)(Et(2)N=CHCH(3))][OTf] are directly observed. The complex (Ph(2)SiP(2))Pd(OTf)(2) (14) was also studied for amine activation and generates dimeric [(Ph(2)SiP(2))Pd](2)[OTf](2) (16) as the dominant palladium product. These collective data are discussed with respect to the mechanism of the amine activation and, in particular, the influence that solvent polarity and charge have on the overall reaction profile.  相似文献   

18.
Reaction of sodium perchlorate-crown ether derivative (LH2) complex [Na2LH2](ClO4)2 (1) with palladium acetate afforded two related compounds of macrocyclic palladium(II)-sodium(I) dimeric tetranuclear complexes, [Pd2Na2L2(mu-OH2)2](ClO4)2(CH2Cl2)3 (2) and [Pd2Na2(L-)2](CH3CN)2(C3H6O)2 (3) and their structures were characterised by IR, NMR, mass and X-ray analysis; the latter was revealed as an unusual metal-mediated electron delocalised complex.  相似文献   

19.
Reaction of the dimeric species [(eta3-Ind)Pd(mu-Cl)]2 (1) (Ind = indenyl) with NEt3 gives the complex (eta(3-5)-Ind)Pd(NEt3)Cl (3), whereas the analogous reactions with BnNH2 (Bn = PhCH2) or pyridine (py) afford the complexes trans-L2Pd(eta1-Ind)Cl (L = BnNH2 (4), py (5)). Similarly, the one-pot reaction of 1 with a mixture of BnNH2 and the phosphine ligands PR3 gives the mixed-ligand, amino and phosphine species (PR3)(BnNH2)Pd(eta1-Ind)Cl (R = Cy (6a), Ph (6b)); the latter complexes can also be prepared by addition of BnNH2 to (eta(3-5)-Ind)Pd(PR3)Cl (R = Cy (2a), Ph (2b)). Complexes 6 undergo a gradual decomposition in solution to generate the dinuclear Pd(I) compounds (mu,eta3-Ind)(mu-Cl)Pd2(PR3)2 (R = Cy (7a), Ph (7b)) and the Pd(II) compounds (BnNH2)(PR3)PdCl2 (R = Cy (8a), Ph (8b)), along with 1,1'-biindene. The formation of 7 is proposed to proceed by a comproportionation reaction between in situ-generated Pd(II) and Pd0 intermediates. Interestingly, the reverse of this reaction, disproportionation, also occurs spontaneously to give 2. All new compounds have been characterized by NMR spectroscopy and, in the case of 3, 4, 5, 6a, 7a, 7b, and 8a, by X-ray crystallography.  相似文献   

20.
Complexes of salicylhydroxamic acid (shaH) with palladium(II) and platinum(II) were investigated. The synthesis of [Pt(sha)(2)] was attempted via a number of methods, and ultimately (1)H NMR investigations revealed that salicylhydroxamate would not coordinate to chloro complexes of platinum(II). However, [Pt(sha-H)(PPh(3))(2)] was successfully synthesized and the crystal structure determined (orthorhombic, space group Pca2(1) a = 17.9325(19) A, b = 11.3102(12) A, c = 18.2829(19) A, Z = 4, R = 0.0224). The sha binds via an [O,O] binding mode, in its hydroximate form. In contrast the palladium complex [Pd(sha)(2)] was readily synthesized and crystallized as [Pd(sha)(2)](DMF)(4) in the triclinic space group P(-)1,a = 7.066(1) A, b = 9.842(2) A, c = 12.385(2) A, alpha = 99.213(3)(o), beta = 90.669(3), gamma = 109.767(3)(o), Z = 1, R = 0.037. The unexpected [N,O'] binding mode of the salicylhydroxamate ligand in [Pd(sha)(2)] prompted investigation of the stability of a number of binding modes of salicylhydroxamic acid in [M(sha)(2)] (M = Pd, Pt) by density functional theory, using the B3LYP hybrid functional at the 6-311G* level of theory. Geometry optimizations were carried out for various binding modes of the ligands and their relative energies established. It was found that the [N,O'] mode gave the more stable complex, in accord with experimental observations. Stabilization of hydroxamate binding to platinum is evidently afforded by soft ligands lying trans to them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号