首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibria between aluminium(III), pyrocatechol (1,2-dihydroxybenzene, H2L) and OH were studied in 0.6 M Na(Cl) medium at 25°C. The measurements were performed as emf titrations (glass electrode) within the limits 1.5 ≤ − log[H+] ≤ 9; 0.0005 ≤ B ≤ 0.015 M; 0.006 ≤ C ≤ 0.03 M and 2 ≤ C/B ≤ 30 (B and C stand for the total concentrations of aluminium(III) and pyrocatechol respectively). All data can be explained with a main series of complexes: A1L+, log β−2,1,1 = − 6.337 ± 0.005; A1L2, log β−4,1,2 = −15.44 ± 0.017 and A1L33−, log β−6,1,3 = − 28.62 ± 0.024 together with two minor species: Al(OH)L22−, log β−5,1,2 = − 23.45 ± 0.079 and Al3(OH)3L3, log β−9,3,3 = − 29.91 ± 0.066. Of the two, the latter probably is a type of average composition complex principally occurring at low C/B quotients. The first acidity constant for pyrocatechol as determined in separate experiments is log β−1,0,1 = − 9.198 ± 0.001. The standard deviations given are 3σ(log β p,q,r). Data were analyzed with the least squares computer program LETAGROPVRID. In a model calculation using kaolinite as solid phase, we compared the complexation ability of this system with that of the system Al3+-OH-salicylic acid, reported earlier in this series.  相似文献   

2.
The reaction of squaric acid, H2C4O4, with the trialkyl derivatives of aluminium, gallium and indium (R3M with R = CH3, C2H5) in a 12 molar ratio leads to bis(dialkylmetal) squarates. The Ga and In compounds dissociate in water forming R2M+ and C4O42? ions. From these solutions the squarates crystallize as mono- and dihydrates, respectively. The vibrational spectra (IR and Raman) are discussed.  相似文献   

3.
The mixed ligand complex formation had been studied in the aluminate-fluoride, gallate-fluoride, aluminate-sulphide and gallate-sulphide systems by spectrophotometric as well as potentiometric methods using glass and sulphide selective electrodes. The formation of the species Al(OH)3F? and Ga(OH)2S? has been demonstrated and the equilibrium constants have been determined. Similar interaction could not be detected in the aluminate-sulphide and gallate-fluoride systems.The differences in behaviour of the metal ions to the characteristically hard fluoride and soft sulphide ligands can be interpreted in that the Ga3+ ion may form complexes with charged soft ligands too, its behaviour then differing from that of the typically hard Al3+ ion.  相似文献   

4.
The mixed complexes of Eu(III) with succinate (succ2?) and malonate (mal2?) and ethylenediamine (en) have been studied polarographically at 25°C and at constant ionic strength, μ = 0.1 (NaNO3) and pH 6. The reduction of the complexes in each case is quasi-reversible and diffusion-controlled. In each system three mixed complexes are formed, viz. [Eu(succ)(en)]+, [Eu(succ)(en)2]+ and [Eu(succ)2(en)]? with stability constants log β11 = 9.2, log β12 = 17.5 and log β21 = 11.7; and [Eu(mal)(en)]+, [Eu(mal)2(en)2]? and [Eu(mal)3(en)]3? with stability constants log β11 = 11.4, log β22 = 19.08 and log β31 = 13.5 respectively.  相似文献   

5.
Tris(alkylenedithiophosphates) of arsenic(III), antimony(III) and bismuth(III),
have been synthesized by the reactions of alkylenedithiophosphoric acids with metal oxides and chlorides and of their ammonium salts with metal chlorides in suitable solvents. Mixed chloride alkylenedithiophosphates of arsenic(III) and antimony(III),
have been obtained by the reactions of metal chlorides with ammonium alkylenedithiophosphates at 1 : 1 and 1 : 2 molar ratios or alternatively by the co-disproportionations reactions of metal chlorides with metal tris(alkylenedithiophosphates) at different (2 : 1 and 1 : 2) molar ratios. These new compounds have been characterized by elemental analyses, molecular weight measurements and spectroscopic (IR, and 1H and 31P NMR) data. Chelated structures with bidentate alkylenedithiophosphate groups have been proposed for all these derivatives.  相似文献   

6.
Eight tris(β-diketonate)gallium(III) and seven tris(β-diketonate)-indium(III) complexes M(RCOCH-COR′)3, with R′being difluoromethyl and trifluoromethyl substituents and R′ being methyl, phenyl, aryl, 2′-naphthyl and 2′-thienyl substituents have been studied by nuclear magnetic resonance spectroscopy. The complexes are all nonrigid (fluxional) and their 19F NMR spectra show four resonances in the nonexchanging regions due to cis and trans isomers. A variable low temperature study of these complexes was done for the gallium chelates and activation parameters are calculated. The indium complexes all have nonexchanging regions below ?100°C. The 13C NMR data on the complexes are also reported.  相似文献   

7.
An improved synthesis of chlorodicyclopentadienyl derivatives of scandium(III), titanium(III) and vanadium(III) has been developed by the reaction of thallium cyclopentadienide with the appropriate anhydrous metal trihalides.  相似文献   

8.
Spectrophotometric methods were utilized for stability constant determinations of the Fe(III) interaction with glycinehydroxamic acid (GX) at I = 0.15 M NACl and T = 25°C. Program SQUAD II was used to assess the absorbance data in the wavelength range 300–520 nm. Four constants were determined for 1:1:1, 1:1:0, 2:1:1 or 3:1:3 and 2:1:0 complex species in the pH range 1.0–7.5. The kinetics of the interactions of Fe(III) with GX were also studied in the pH range 1.0–3.0 by the stopped flow method. The observed rate constant at a given pH was kobs = A + BTGX. The parameters A and B are functions of pH in the range 1.7–3.0 and only A is a function of pH in the range 1.0–1.7. The mechanism of complex formation was discussed in the light of the experimental results and the equilibrium study. It has been concluded that FeOH2+ is the reactive species in the complex formation of FeGXH3+ species while Fe(OH)2+ is the reactive species in the complex formation of FeGX2+ species.  相似文献   

9.
The preparation, spectroscopic and magnetic properties are reported for complexes of iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) with th  相似文献   

10.
The adsorption of a long hydrocarbon chain oxine derivative, 7-(4-ethyl-1-methyloctyl)-8-quinolinol, on the macromolecular Amberlite XAD-7 support is shown by FT-IR spectroscopy to be the result of only weak extractant-support interactions. It is also shown that the chelation ability of the extractant towards gallium(III) does not suffer from the presence of the solid support. Finally the stereochemistry (fac or mer configuration) of the tris-7-(4-ethyl-1 -methyloctyl)-8-quinolinato gallium(III) complex formed either in solution in an organic diluent or on the support is discussed on the basis of 1H and 13C NMR and FIR data.  相似文献   

11.
Reduction of [Ru2(CH3COO)2(C2O4)2(H2O)2]? by N-(2-hydroxyethyl)-ethylenediaminetriacetatoaquotitanium(III) [Ti(HEDTA)] involves several distinct stages. The first stage has a half-time of less than 1 ms, and is interpreted as a substitution reaction leading to a multinuclear intermediate. The second stage has a second-order rate constant of 5 x 103M?1s?1 [25°C, μ = 0.1 m (LiCF3SO3)]. The rate-limiting process for the second stage is electron transfer within the assembled multinuclear complex. Subsequent slower stages correspond to breakup of the multinuclear Ru(II)2-Ti(IV) complex formed by electron transfer. The overall rate of reduction of this oxidant by Ti(HEDTA) is less than the corresponding rate for the reaction in which Ti3+ acts as reductant, mainly because the stability of the binuclear complex is reduced by the presence of the aminoacid ligand. The data are consistent with the conclusion that the ligand increases the rate of intramolecular ET, probably by reducing geometric change associated with oxidation of Ti(III) to Ti(IV).  相似文献   

12.
It is shown by means of 19F NMR that the hexacoordinated solvates of aluminium and gallium in solutions of methyl, ethyl and n-propyl alcohols form outer-sphere complexes with the halide ions, F?, Cl? and Br?, in which the acidoligands are situated in the second coordination sphere. The outer-sphere complexes are formed on the basis of purely alcoholic solvates, M(ROH)63+, as well as the complexes containing the mixed coordination sphere, M(ROH)6?n(H2O)n3+, and Al(CH3OH)6?n(C2H5OH)n2+.  相似文献   

13.
V(III), Cr(III), Mn(II) and Fe(II) methylsulphates form stable donor-acceptor complexes with nitrogen donors. 1:1 and 1:2 complexes with bipyridyl have been prepared in respect of trivalent salts and 1:2 and 1:4 metal:base complexes have been obtained in respect of divalent metal salts with bipyridyl and pyridine respectively. Electronic spectra suggest an octahedral geometry around metal ions. IR spectra of the anhydrous metal methylsulphates have been studied and assigned. The changes in the IR spectra of the methylsulphate group in different stereochemical situations have been observed.  相似文献   

14.
2,2′-Bis(o-diphenylphosphino)bibenzyl, o-Ph2PC6H4CH2CH2C6H4PPh2-o (bdpbz), is dehydrogenated by various rhodium complexes to give the planar rhodium(I) complex
, from which the ligand, 2,2′-bis(o-diphenylphosphino)-trans-stilbene (bdpps) can be displaced by treatment with sodium cyanide. The stilbene forms stable chelate olefin complexes with planar rhodium(I) and iridium(I) and with octahedral iridium(III). On reaction with halide complexes of nickel(II), palladium(II) or platinum(II), the stilbene ligands
(R = Ph or o-CH3C6H4) lose a vinyl proton in the form of hydrogen chloride to give chelate, planar σ-vinyls of general formula =CHC6H4PR2-o) (M = Ni, Pd, Pt; X = Cl, Br, I) of high thermal stability; analogous methyl derivatives =CHC6H4PR2-o) are obtained from Pt(CH3)2(COD) (COD = 1,5-cyclooctadiene) and the stilbene ligands. The bibenzyl also forms chelate σ-benzyls HCH2C6H4PPh2-o) (M = Pd, Pt; X = Cl, Br, I). The 1H NMR spectra of the o-tolyl methyl groups in the compounds =CHC6H4PR2-o) (M = Ni, Pd, Pt; R = o-CH3C6H4) vary with temperature, probably as a consequence of interconversion of enantiomers arising from restricted rotation about the M---P and M---C bonds. Possible mechanisms for the dehydrogenation reactions are briefly discussed.  相似文献   

15.
Tris-complex of Co(II), Ni(II), Cu(II) fluoroborates, perchlorates and iodides with the title ligand conform to the composition M(DPymPz)3X2, nH2O [M = Co(II), Ni(II), Cu(II); X = ClO4, BF4 and I, n = 0,2]. Physico-chemical characterisations of the complex species have been made from electronic and vibrational spectra, magnetic susceptibility measurements in the solid state and conductivity measurements in solution. Electronic spectral features together with the corresponding ligand field parameters suggest an overall octahedral environment for the pyrazolyl nitrogen (tertiary) and one of the pyrimidyl nitrogens as bonding sites in forming these complexes while the anion (X) retains its identity (as in free form) in the said species.  相似文献   

16.
Pink-brown crystalline alkali-metal trifluoromonosulphatomanganates(III), A2[MnF3(SO4)] (A = NH4, Li, Na or K), have been synthesised in high yields by reacting KMnO4 or MnO(OH) with 40% HF and A2SO4 or by the reaction of MnO(OH) with 40% HF and A2S2O8 (A = NH4 or K). The chemicallly estimated oxidation state of manganese occurs between 2.9 and 3.1, and the room temperature magnetic moments lie in the range 4.0–4.2 BM. (NH4)2[MnF3(SO4)] on being pyrolysed at 340°C yields MnSO4.  相似文献   

17.
J.G. Leipoldt  H. Meyer 《Polyhedron》1985,4(9):1527-1531
The reaction of Cl?, Br?, I?, Co(CN)63? and NCS? with meso-tetrakis (p-trimethylammoniumphenyl)porphinatodiaquorhodate(III), [RhTAPP(H2O)2]5+, has been studied at 15, 25 and 35°C in 0.1 M [H+] with μ = 1.00 M (NaNO3). The value of the acidity constant, Kal, at 25°C is 4.39 × 10?9 M. The reactions are first order in anion concentration up to 0.9 M. The values of the stability constants, K1, and the second order rate constants, k1, for the reaction with Cl?, Br?, I?, Co(CN)63? and NCS? are respectively 0.23 M?1 and 2.5 × 10?3 M?1 s?1, 1.1 M?1 and 6.92 × 10?3 M?1 s?1, 40.0 M?1 and 17.0 × 10?3 M?1 s?1, 550 M?1 and 20.0 × 10?3 M?1 s?1, 3400 M?1 and 20.9 × 10?3 M?1 s?1. The porphine greatly labilizes the Rh(III). There has been about a 500-fold increase in the rate constant for substitution compared to that of [Rh(NH3)5H2O]3+. The substitution rates are however about the same as for [Rh(TPPS)(H2O)2]3?, indicating that the overall charge on the complex plays only a minor role. The kinetic results indicate that dissociative activation is occurring in these reactions.  相似文献   

18.
Convenient syntheses of the tetramines 2, 3:10, 11-dibenzo-1, 5, 8, 12-tetraazadodecane, (L1, and 3, 4:9, 10-dibenzo-1, 5, 8, 12-tetraazadodecane (L2), are described. Both ligands form complexes with Ni(II), Zn(II) and Cd(II). The X-ray structure of [Cd(L1)I2), confirms a five coordinate geometry for the Cd atom, where the two iodines are bonded to the metal and (L1) acts as a tridentate ligand. The complex crystallises in the monoclinic space group P21/c with a = 19.741(4) Å, b = 8.726(3) Å, c = 12.221(4) Å, and β = 104.55(3)°. The structure was refined to R = 0.062 for 1051 reflections.  相似文献   

19.
The synthesis and the properties of the complexes Cp2TaCl2, Cp2M(allyl), Cp2M(1-methylallyl) and Cp2M(2-methylallyl) with M  Nb, Ta are described. The complex Cp2TaCl2 has one unpaired electron per tantalum atom, while the allyl complexes are diamagnetic. The IR and PMR spectra indicate that the allyl group is π-bonded to the metal. The mass spectra of the complexes are discussed; the thermal stability of the Cp2Nb- and Cp2Ta-(allyl) complexes was investigated by differential thermal analysis. The properties of the niobium and tantalum complexes are compared with those of the corresponding titanium complexes.  相似文献   

20.
3,3′-Dicarbomethoxy-2,2′-bipyridyl(DCMB)reacts with K2MCl4(M = Pd,Pt) to give M(DCMB)Cl2 and with RhCl3 to give the cis-[Rh(DCMB)2Cl2]+ ion. Attempts to prepare the tris (DCMB) complex with Rh(III) and analogous Co(III) complexes were unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号