首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
Hualing D  Zhide H 《Talanta》1989,36(6):633-637
The ion flotation of 31 metal ions in hydrochloric/nitric acid solution with the cationic surfactant cetylpyridinium chloride was investigated. A 25-ml portion of 0.27-2.87 x 10(-4)M metal ion and 1.8-6.0 x 10(-4)M cetylpyridinium chloride solution in 0.17-3.4M acid mixture ([HCl]:[HNO(3)] = 2.4:1) was subjected to flotation in a cell, 22.5 cm high and 4.0 cm in diameter, for 5 min, with nitrogen bubbles. Ir(IV), Pt(IV), Ge(IV), Sn(IV), Bi(III), Au(III), Tl(III), Pd(II) and Sn(II) were floated from solution in 95-100% yield; Ru(III), Rh(III), Ir(III), Hg(II), Ag(I) and Tl(I) were partly floated, while Cr(VI), Ti(IV), Zr(IV), Ga(III), In(III), Fe(III), Sb(III), Al(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), CD(II) and Pb(II) were floated with less than 20% yield. The flotation behaviour of these metal ions in the mixed acid system was compared with that in hydrochloric acid. The flotation is more efficient in the mixed acid system.  相似文献   

2.
《Analytical letters》2012,45(4):267-271
Abstract

A spectrophotometric method is described for the determination of 25–150μ;g of rhodium (III) using 1-(2-pyridylazo)-2-naphthol. One milligram of Ir(III) or Ir(IV), 200μ;g Ru(IV), 400μ;g Os(IV), 350μ;g Pt(IV), 5 mg Ag(I), and 100μ;g Au(III) do not interfere. Larger amounts of silver and gold are removed as AgCl and, after reduction with ascorbic acid, Au metal. A modification of the method permits the successive determination of 4–100μ;g of Hh(III) and 50–500μ;g of Pd(II) in a single sample.  相似文献   

3.
Iridium and rhodium are among the platinum group metals. The properties, production processes, and aqueous chemistry of both metals are reviewed. The separation of Ir(IV) and Rh(III) from hydrochloric acid solution is dependent on the characteristics of the solvent extraction systems. In most of the extraction conditions, Ir(IV) is selectively extracted over Rh(III) by either amines or neutral extractants. Rh(I) can be selectively extracted over Ir(III) by neutral extractants after Rh(III) is reduced in the presence of a reducing agent. The separation of these two metals using cationic extractants has also been reported. Although selective extraction of one metal over the other is possible, more efficient solvent extraction systems need to be developed.  相似文献   

4.
The possibility of selective preconcentration of platinum group metal ions by Donnan dialysis was investigated. The effect of sample matrix (glycine) on self diffusion of the following platinum group metal ions Pt(IV), Pd(II), Rh(III), Ir(III) and Ir(IV) was determined. To separate a sample from the receiver electrolyte (0.5M NH4Cl), anion or cation-exchange membrane were used. Excellent selective preconcentration of Pd(II) in the sample and Ir(III) in the receiver solution was achieved. Experiments performed enable to draw some conclusion on the charge sign of glycinepalladium complexes.  相似文献   

5.
The anionic chlorocomplexes of Au(III), Pt(IV), Pd(II), Ir(IV), Ir(III) and Rh(III) can be floated from aqueous solutions with cationic surfactants of the type RNR'3Br. The flotation behavior of each metal is reported with respect to variations of hydrochloric acid and sodium chloride concentrations, the R and R' chain lengths, initial surfactant concentrations and initial metal ion concentrations. The flotation behavior of the metals is compared to the anion-exchange selectivity coefficients and a flotation selectivity sequence of Au(III) > Pt(IV), Ir(IV), Pd(II) > Ir(III) > Rh(III) is generally observed. Nearly 100% of Au(III), Pt(IV), Ir(IV) and Pd(II) can be recovered from dilute solutions using the ion flotation procedures.  相似文献   

6.
The ion chromatography of chloro complexes of Au(III), Ir(IV), Ir(III), Os(IV), Pd(II), Pt(IV), Rh(III) and Ru(III) was investigated using anion-exchange and ion-interaction techniques involving silica-based phases. Chloride was either absent or at a very low level and the pH was high enough to enable steel-fabricated liquid chromatography equipment to be used. With anion exchange, Ir(IV), Ir(III), Os(IV) and Pt(IV) gave good stable chromatography and all produced linear calibration plots, except Ir(IV) owing to instability of the sample solution. The detection limits were Ir(III) 5, Os(IV) 10 and Pt(IV) 2 ng ml?1. The ion-interaction technique was not so successful, only Au(III) and Pd(II) giving stable chromatography. The calibration plots were slightly curved, although acceptable, and the detection limits were 10 and 30 ng ml?1 for Au (III) and Pd(II), respectively.  相似文献   

7.
Self-assembled monolayers (SAMs) of carboxylated alkanethiolates (-S(CH(2))(n-1)CO(2)(-)) on flat gold electrode surfaces are used to tether small (ca. 2 nm d.) iridium(IV) oxide nanoparticles (Ir(IV)O(X) NPs) to the electrode. Peak potential separations in cyclic voltammetry (CV) of the nanoparticle Ir(IV/III) wave, in pH 13 aqueous base, increase with n, showing that the Ir(IV/III) apparent electron transfer kinetics of metal oxide sites in the nanoparticles respond to the imposed SAM electron transfer tunneling barrier. Estimated apparent electron transfer rate constants (k(app)(0)) for n = 12 and 16 are 9.8 and 0.12 s(-1). Owing to uncompensated solution resistance, k(app)(0) for n = 8 was too large to measure in the potential sweep experiment. For the cathodic scans, coulometric charges under the Ir(IV/III) voltammetric waves were independent of potential scan rate, suggesting participation of all of the iridium oxide redox sites (ca. 130 per NP) in the NPs. These experiments show that it is possible to control and study electron transfer dynamics of electroactive nanoparticles including, as shown by preliminary experiments, that of the electrocatalysis of water oxidation by iridium oxide nanoparticles.  相似文献   

8.
Luminol-K2S2O8体系中金属离子化学发光行为的研究   总被引:1,自引:0,他引:1  
张新荣  章竹君 《化学学报》1987,45(2):195-197
报导了在自行设计的流动注射式化学发光分析仪上,对Luminal-K2S2O8体系中32种金属离子的化学发光行为的系统研究.确定了对金属离子的最优测定条件以及大多数金属离子的检出极限和线性范围.  相似文献   

9.
Davies W  Gray W  McLeod KC 《Talanta》1970,17(10):937-944
Experimental conditions have been established which enable uranium to be determined coulometrically by the reduction of uranium(VI) to uranium(IV) at a platinum working electrode, by controlled-potential or controlled-potential-limit techniques. The procedure has been used successfully as a subsidiary method in the routine determination of uranium in pure uranyl nitrate solutions. The platinum electrode has several important practical advantages over the well established mercury-pool electrode for the coulometric determination of uranium. The consecutive determination of iron(III) and uranium(VI), or plutonium(IV) and uranium(VI) can be carried out with the same working electrode in the same solution and the coulometric oxidation of uranium(IV) to uranium(VT) is practicable. The rate of stirring of the cell liquor is much less critical in the case of the platinum electrode. Two main problems had to be overcome before a practical procedure could be achieved; hydrogen evolution during the uranium(VI)-(IV) reduction had to be eliminated so that 100% current efficiency could be obtained for the desired reaction and electrode-surface poisoning phenomena had to be controlled so that reaction times could be kept reasonably short. It was found that selection of a hydrochloric acid base solution containing a small amount of bismuth(III) enabled hydrogen evolution to be avoided: also electrode-surface poisoning with this base solution was not particularly serious and could be maintained at a satisfactorily low level by occasionally anodizing the electrode in dilute sulphuric acid. Bismuth(III) forms a complex with chloride ions and its presence increases the hydrogen overvoltage at the working electrode: no visible deposit of bismuth metal forms on the electrode during the uranium reduction. Samples containing nitrate can be analysed provided sulphamic acid is added to this hydrochoric acid base solution.  相似文献   

10.
Dissymmetric dinuclear complexes (PR3)(CO)(H)2Ir(μ-SBu-t)2Ir(C4F6(CO)-(PR3) (III, R = OMe or Me), which can be described as the juxtaposition of dihydrido and alkyne adducts of Vaska's complex associated through thiolato bridges, were obtained by the reaction of hexafluoro-2-butyne with symmetric dinuclear dihydridoiridium(II) complexes, [Ir(H)(μ-SBu-t)(CO)(PR3)]2(]IrIr) (II). When R = OMe, after the loss of H2, a molecular rearrangement leads to the symmetric dinuclear iridium(II) complex [Ir(μ-SBu-t)(CO)(P(OMe)3)]2(C4F6) (IV). A correlation between the presence of an intense absorption near 230 nm in the UV-visible spectra and the existence of a metal—metal bond is established. A sequence of formation, splitting and re-formation of the metal—metal bond is observed along the series of derivatives obtained from [Ir(μ-SBu-t)(CO)P(OMe)3]2 (I) to IV, via II and III.  相似文献   

11.
Przeszlakowski S  Flieger A 《Talanta》1979,26(12):1125-1133
The chromatographic behaviour of the platinum metals and gold, silver and copper on paper strips treated with liquid anion-exchangers and eluted with mixtures of HNO3 and HCl was investigated. It was found that increase of HNO3 concentration in the acid mixture increases the RF values more significantly than does that of HCl. The presence of HNO3 in the development solution prevents the reduction of iridium(IV). The RF values of the noble metals increase in the order Au(III) < Os(IV) < Ir(IV) < Pt(IV) < Pd(II) < Ru(III) < Rh(III) Ir(III). Several separations of noble metals were carried out on paper strips treated with trioctylamine or quaternary alkylammonium salts, as well as the column separation of the mixture Pt---Pd---Rh. The proposed chromatographic systems seem to be especially useful for the separation of non-volatile noble metals.  相似文献   

12.
Two-electron mixed-valence complexes of the general formula (tfepma)(3)Ir(2)(0,II)RBr [tfepma = bis(bis(trifluoroethoxy)phosphino)methylamine, MeN[P(OCH(2)CF(3))(2)](2), and R = CH(3) (2), CH(2)C(CH(3))(3) (3)] have been synthesized and structurally characterized and their reactivity with H(2) investigated. Hydrogenation of 2 and 3 proceeds in a cascade reaction to produce alkane upon initial H(2) addition, followed by the formation of the Ir(2)(I,III) binuclear trihydride-bromide complex (tfepma)(3)Ir(2)(I,III)H(3)Br (4) upon the incorporation of a second molecule of H(2). Hydrogenation of two-electron mixed-valence di-iridium alkyl complexes is examined with nonlocal density-functional calculations. H(2) attacks the Ir(II) metal center prior to alkyl protonation to produce an eta(2)-H(2) complex. Transition states link all intermediates to a complex that has the same regiochemistry as the crystallographically determined final product. Calculated atomic charges suggest that the second H(2) molecule is homolytically cleaved within the di-iridium coordination sphere and that a hydrogen atom migrates across the intact Ir-Ir metal bond. These results are consistent with the emerging trend that two-electron mixed-valence cores manage the two-electron chemistry of substrates with facility when hydrogen is the atom that migrates between metal centers.  相似文献   

13.
Kumar N  Manku GS  Bhat AN  Jain BD 《Talanta》1970,17(9):873-876
Pyridine-2-aldoiumc (I) has been found to be a sensitive reagent for the gravimetric determination of palladium(II). From chloride medium, precipitation is complete at pH 3.0-11.0, and in solution containing 1NHNO(3) to pH6.0. The compositions of the precipitates (dried at 130 degrees ) correspond to PdL(2), and PdL(2). HNO(3) (HL representing the reagent) respectively. Pd(II) can be estimated gravimetncally in presence of acetate, oxalate, tartrate, phosphate, fluoride borate, perchlorate, Cu(II), Cd, Co(II), Fe(II), Ni, Zn, Pb, Bi, Sb(III), Pt(IV), Ir(IV), Ru(III), Rh(III); Os(IV) in quantities more than twice that of Pd(II), and Ag(I), Au(III) and Fe(II) even m traces cause serious interference. The yellow uranium(VI) complex with (I) is precipitated quantitatively over the pH range 3.5-10.5 and, after washing and drying corresponds to the composition (c(6)h(5)n(2)o)(2)uo(2), The uranium(VI) complex with 6-methylpyridine-2-aldoxime (II) is precipitated quantitatively over the pH range 3.0-10.5, and after washing and drying at 120-130 degrees corresponds to UO(2),(C(7),H(7),N(2)O)(2). Both (I) and (II) are suitable for the estimation of 1-50 mg of uranium(VI) in the presence of up to 10-fold quantities ofTh(IV), La(III) and Ce(III) even when present together. Ce(IV) in quantities more than three times that of U must be reduced to Ce(III). Tartrate, citrate, phosphate, Ti(IV) and Zr interfere, but acetate, oxalate, and borate do not.  相似文献   

14.
The crystal structure of the complex [U(tpa)(2)]I(3), 1 (tpa = tris[(2-pyridyl)methyl]amine), has been elucidated. The complex exists as only one enantiomer in the crystal leading to the chiral space group P2(1)2(1)2(1). The coordination geometry of the metal can be described as a distorted cube. Accidental oxidation of [U(tpa)(2)]I(3) led to the isolation of the unusual mononuclear bishydroxo complex of uranium(IV) [U(tpa)(2)(OH)(2)]I(2).3CH(3)CN, 2, which was structurally characterized. The controlled reaction of [U(tpa)(2)]I(3) with water resulted in the oxidation of the metal center and led to the formation of protonated tpa and of the trinuclear U(IV) oxo complex ([U(tpa)(mu-O)I](3)(mu(3)-I))I(2), 3. The solid state and solution structures of this trimer are reported. The pathway suggested for the formation of this complex is the oxidation of the [U(tpa)(2)]I(3) complex by H(2)O to form a U(IV) hydroxo complex which then decomposes, eliminating mono-protonated tpa. The comparison with the reported reaction with water of cyclopentadienyl derivatives points to a higher reactivity toward water reduction of the bis(tpa) complex with respect to the cyclopentadienyl derivatives. The reaction of U(III) with methanol in the presence of the supporting ligand tpa leads to formation of alkoxo complexes similarly to what is found for amide or cyclopentadienyl derivatives. The monomethoxide complex [U(tpa)I(3)(OMe)], 4, has been prepared in good yield by alcoholysis of the U(III) mono(tpa) complex. The crystal structure of this complex has been determined. The reaction of [U(tpa)(2)]I(3) with 2 equiv of methanol in acetonitrile allows the isolation of the bismethoxo complex of U(IV) [U(tpa)I(2)(OMe)(2)], 5, in 35-47% yield, which has been fully characterized. To account for the oxidation of U(III) to U(IV) the suggested mechanism assumes that hydrogen is evolved in both reactions.  相似文献   

15.
The electronic structures of metallocorroles (tpfc)M(NH(3))(2) and (tfc)M(NH(3))(2) (tpfc is the trianion of 5,10,15-(tris)pentafluorophenylcorrole, tfc is the trianion of 5,10,15-trifluorocorrole, and M = Co, Rh, Ir) have been computed using first principles quantum mechanics [B3LYP flavor of Density Functional Theory (DFT) with Poisson-Boltzmann continuum solvation]. The geometry was optimized for both the neutral systems (formal M(III) oxidation state) and the one-electron oxidized systems (formally M(IV)). As expected, the M(III) systems have a closed shell d(6) configuration; for all three metals, the one-electron oxidation was calculated to occur from a ligand-based orbital (highest occupied molecular orbital (HOMO) of B(1) symmetry). The ground state of the formal M(IV) system has M(III)-Cπ character, indicating that the metal remains d(6), with the hole in the corrole π system. As a result the calculated M(IV/III) reduction potentials are quite similar (0.64, 0.67, and 0.56 V vs SCE for M = Ir, Rh and Co, respectively), whereas the differences would have been large for purely metal-based oxidations. Vertically excited states with substantial metal character are well separated from the ground state in one-electron-oxidized cobalt (0.27 eV) and rhodium (0.24 eV) corroles, but become closer in energy in the iridium (0.15 eV) analogues. The exact splittings depend on the chosen functional and basis set combination and vary by ~0.1 eV.  相似文献   

16.
A novel flow injection method has been developed for the indirect determination of uranium by the on-line reduction and subsequent fluorimetric detection of cerium(III). A sample solution containing uranium(VI), prepared as a sulfuric acid solution, was injected into a sulfuric acid carrier solution and passed through a column packed with metal bismuth to reduce uranium(VI) to uranium(IV). The sample solution was merged with a cerium(IV) solution to oxidize uranium(IV) to uranium(VI) and the cerium(III) generated was then monitored fluorimetricaly. The present method is free from interference from zirconium, lanthanides, and thorium, and has been successfully applied to the determination of uranium in monazite coupled with an anion-exchange separation in a sulfuric acid medium to eliminate iron(III). The sample throughput was 25 per hour and the lowest detectable concentration was 0.0042 mg l(-1).  相似文献   

17.
Oximidobenzotetronic acid is recommended for the separation and gravimetric determination of palladium and cobalt An ethanolic solution of the reagent quantitatively precipitates palladium(II) from solutions which are 0.75 N in acid up to pH 5.1, the complex is weighed as Pd(C9H5NO4)2. Cobalt(II) can be determined in the filtrate after the precipitation of palladium. With 0.5 N acid solutions, no interference was found from Pt(IV), Ir(IV), Rh(III), Ru(III), Os(IV), Au(III), Ag(I), Cu(II), Fe(III), Ni(II), Hg(II). Pb(II), Bi(III), Cd(II), As(V), Se(VI), Te(IV), Mo(VI), Sb(III), Al(III), Cr(III), Zn(II), Ti(IV), Zr(IV). acetate, oxalate, citrate, tartrate, phosphate and fluoride.  相似文献   

18.
Johar GS  Agarwala U 《Talanta》1970,17(4):355-359
A simple and rapid method is described for the gravimetric determination of ruthenium(III) with two new isomeric reagents, m-and p-phenylene-di(1-tetrazoline-5-thione). Solutions containing milligram amounts of ruthenium(III)on treatment with the acetone or alcohol solutions of the reagents at pH 5.5-7.0 give a quantitative yield of an intensely green insoluble 1:1 complex which can be easily filtered off and dried at 110-115 degrees . Amounts of ruthenium down to 0.5 mg can be determined with fairly good accuracy and precision. Even large amounts of rhodium do not cause any interference. The following cations interfere: Pd(II), Pt(IV), Au(III), Ir(IV), Bi, Fe(III), Cu(II), Hg(I), Hg(II), Pb, Cd, T1(I) and Ag.  相似文献   

19.
The simple potentiometric method proposed for the indirect determination of 1–10 mg of gold(III) is based on reduction to the metal with excess of cobalt(II) in the presence of 1,10-phenanthroline or 2,2'-bipyridine at pH 3 and 50°C, and titration of the unused cobalt(II) complex with iron(III) chloride solution. Many metal ions can be tolerated; Ag(I) and Pd(II) are eliminated by precipitation with sodium chloride and 1,10-phenanthroline or 2,2'-bipyridine, respectively, but Hg(II), Fe(III) and Pt(IV) interfere. The method is applied to the determination of gold in alloys.  相似文献   

20.
Summary The solvent extraction of Rh(III) and Pt(IV) with N,N-di-n-hexyl-N'-benzoylthiourea (DHBT)/toluene is substantially accelerated in the presence of tin(II) chloride. Low concentrations of SnCl2 from 0.02 to 0.03 mol/l and metal/ligand ratio of 1:4 (Pt) resp. 1:9 (Rh) lead to low residual metal concentrations below the detection limit of GFAAS. The extraction behaviour of Pt(II), Ru(III) and Ir(III) is not affected by the treatment with SnCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号