首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protonation constants of methyl/nitro substituted 1,10-phenanthrolines {(m/n-sphen): 4-methyl-phenanthroline (4-mphen), 5-methyl-1,10-phenanthroline (5-mphen), 4,7-dimethyl-1,10-phenanthroline (dmphen), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) and 5-nitro-1,10-phenanthroline (5-nphen)] and the amino acids (aa) l-tyrosine (tyr) and glycine (gly), and their corresponding binary and ternary stability constants with Cu(II), were determined in aqueous 0.1 mol·L?1 KCl ionic media at 298.15 K. The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the “BEST” software package. The species distribution diagrams were obtained using the “SPE” software package under the experimental conditions described. The order of stability of the ternary complexes in terms of the primary ligands is [Cu(tmphen)(aa)]+ > [Cu(dmphen)(aa)]+ > [Cu(4-mphen)(aa)]+ > [Cu(5-mphen)(aa)]+ > [Cu(5-nphen)(aa)]+. The stability constants of the ternary complexes decrease in the following order: [Cu(m/n-sphen)(gly)]+ > [Cu(m/n-sphen)(tyr)]+, which is identical to the sequence found for the binary complexes of Cu(II) with gly and tyr.  相似文献   

2.
Affinity capillary electrophoresis (ACE) and pressure‐assisted ACE were employed to study the noncovalent molecular interactions of antamanide (AA), cyclic decapeptide from the deadly poisonous fungus Amanita phalloides, with univalent (Li+, Na+, K+, and NH4+) and divalent (Mg2+ and Ca2+) cations in methanol. The strength of these interactions was quantified by the apparent stability constants of the appropriate AA‐cation complexes. The stability constants were calculated using the nonlinear regression analysis of the dependence of the effective electrophoretic mobility of AA on the concentration of the above ions in the BGE (methanolic solution of 20 mM chloroacetic acid, 10 mM Tris, pHMeOH 7.8, containing 0–50 mM concentrations of the above ions added in the form of chlorides). Prior to stability constant calculation, the AA effective mobilities measured at actual temperature inside the capillary and at variable ionic strength of the BGEs were corrected to the values corresponding to the reference temperature of 25°C and to the constant ionic strength of 10 mM. From the above ions, sodium cation interacted with AA moderately strong with the stability constant 362 ± 16 L/mol. K+, Mg2+, and Ca2+ cations formed with AA weak complexes with stability constants in the range 37–31 L/mol decreasing in the order K+ > Ca2+ > Mg2+. No interactions were observed between AA and small Li+ and large NH4+ cations.  相似文献   

3.
In this study the binary and ternary complexes of copper(II) with substituted 1,10-phenanthrolines [s-phen: 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (dmphen) and 5-nitro-1,10-phenanthroline (nphen)] and l-amino acids [aa: l-phenylalanine (phe), l-tyrosine (tyr) and l-tryptophan (trp)] have been investigated using potentiometric methods in 0.1 mol·L?1 KCl aqueous ionic media at 298.2 K. The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the “BEST” software package. It was inferred that the aromatic 1,10-phenanthrolines act as a primary ligand in the ternary complexes, while the oxygen and nitrogen donor-containing amino acids are secondary ligands. The observed values of Δlog10 K indicate that the ternary complexes are more stable than the binary ones, suggesting no interaction takes place between the ligands in the ternary complexes. The magnitudes of the measured stability constants of all of the ternary complexes are in the order [Cu(s-phen)(trp)]+ > [Cu(s-phen)(tyr)]+ > [Cu(s-phen)(phe)]+, which is identical to the sequence found for the binary complexes of Cu(II) with the amino acids. When the substituted 1,10-phenanthroline is changed, the stability constants of the ternary complexes decrease in the following order: [Cu(dmphen)(aa)]+ > [Cu(phen)(aa)]+ > [Cu(nphen)(aa)]+.  相似文献   

4.
The protonation and complex formation equilibria of two biodegradable aminopolycarboxylate chelants {dl-2-(2-carboxymethyl)nitrilotriacetic acid (GLDA) and 3-hydroxy-2,2??-iminodisuccinic acid (HIDS)} with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions were investigated using the potentiometric method at a constant ionic strength of I?=?0.10?mol·dm?3 (KCl) in aqueous solutions at 25?±?0.1?°C. The stability constants of the proton?Cchelant and metal?Cchelant species for each metal ion were determined, and the concentration distributions of various complex species in solution were evaluated for each ion. The stability constants (log10 K ML) of the complexes containing Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions followed the identical order of log10 K CuL?>?log10 K NiL?>?log10 K PbL?>?log10 K ZnL?>?log10 K CdL for either GLDA (13.03?>?12.74?>?11.60?>?11.52?>?10.31) or HIDS (12.63?>?11.30?>?10.21?>?9.76?>?7.58). In each case, the constants obtained for metal?CGLDA complexes were larger than the corresponding constants for metal?CHIDS complexes. The conditional stability constants (log10 $ K_{\text{ML}}^{'} $ ) of the metal?Cchelant complexes containing GLDA and HIDS were calculated in terms of pH, and compared with the stability constants for EDTA and other biodegradable chelants.  相似文献   

5.
The stepwise metal-ligand stability constants of ARS chelates with Al3+, Ce1+ and Th4+ have been determined by using Bjerrum-Calvin technique. Various computational methods were used to determine the stability constants. The thermodynamic stability constants were also calculated by determining the stepwise stability constants at various ionic strengths and then by extrapolating to zero ionic strength. The order of stability constants was found to be: Th>Al>Ce.  相似文献   

6.
Formation constants of calcium complexes with malonate (mal2?), in the ranges 10 ? t ? 50°C and 0.05 ? I ? 0.9 mol dm?3, were determined by means of alkalimetric titrations in aqueous solution. The species found in this system were [Ca(mal)]0 and [Ca(Hmal)]+; also, the hydrolysis of Ca2+ was taken into account. The effect of ionic medium on the formation constants was studied by using different background salts (KNO3, NaNO3, Et4NI and Et4NBr); the parameters defining ionic strength dependence were calculated from the values of stability constants obtained at different ionic strengths. ΔH and ΔS values were obtained from temperature coefficients of stability constants.A general equation, useful for correlating the formation constants in the studied temperature and ionic strength ranges, has been found. It has also been found that, by considering all the significant interactions in the solution, the formation constants are dependent on temperature and ionic strength only.Literature data are discussed and compared with those obtained in this work.  相似文献   

7.
The complexation reactions between dibenzo-24-crown-8 (DB24C8) and K+, Rb+, Cs+ and Tl+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance–mole ratio data at different temperatures. At 25 °C and in all solvent mixtures used, the stability of the resulting complexes varied in the order Tl+ > K+ > Rb+ > Cs+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° vs. ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions.  相似文献   

8.
The complexation of some alkali and alkaline earth cations with18-crown-6(18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexyl-18-crown-6 (DCY18C6), and dibenzopyridino-18-crown-6 (DBPY18C6) in a methanol solution has been studied by a competitive potentiometric titration using Ag+/Ag electrode as a probe. The stoichiometry and stability constants of the resulting complexes have been evaluated by the MINIQUAD program. The stoichiometry for all resulting complexes was 1:1. The order of stability of Ag+ complexes with desired crown ethers varied as DBPY18C6 > DCY18C6 > 18C6 > DB18C6.The stability of the resulting complexes for each of these crown ethers varies in the order ofK+ > Na+ and Ba2+ > Sr2+ > Ca2+ > Mg2+.For each of the used metal ions the major sequence of the stability constants of the resulting complexes varies as DCY18C6 > 18C6 > DB18C6 > DBPY18C6 with minor exceptions.  相似文献   

9.
The complexation reactions between dicyclohexano-24-crown-8 (DC24C8) and K+, Rb+, Cs+ and Tl+ ions were studied conductometrically in the different acetonitrile-nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 25 °C and in all solvent mixtures used, the stability of the resulting complexes varied in order of Tl+ > K> Rb~ Cs+. The enthalpy and entropy changes of the complexation reactions were evaluated by the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture.  相似文献   

10.
《Comptes Rendus Chimie》2007,10(7):568-572
A series of new ligands derived from N,N′-O-phenylenebis(salicylideneimine) have been synthesized and characterized by spectrometric methods. Their protonation constants and the stability constants of their complexes with Mn2+, Co2+, Ni2+ et Cu2+ have been determined by potentiometric methods in a water–ethanol (90:10 v/v) mixture at a 0.2 mol l−1 ionic strength (NaCl) and at 25.0 ± 0.1 °C. The Sirko program was used to determine the protonation constants as well as the binding constants of both species [M(HL)]+ and [ML]. The stability order obtained is in agreement with Irving–Williams series.  相似文献   

11.
The complexation reactions between 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 (DTBDB18C6) and Li+, Na+ and K+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 20 °C and in nitromethane solvent, the stability of the resulting complexes varied in the order K+ > Na+ > Li+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° versus ΔH° plot of thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions. The ab initio studies calculated at B3LYP/6-31G level of theory, indicate the binding energy of complexes decreases with increasing cation size in the gas phase. In the solution phase, DTBDB18C6 preferentially forms complexes with the larger ions rather than the smaller ions because the solvation energies of the smaller ions are large enough to overcome and reverse the trends in gas phase complexation. The findings of this study suggest that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

12.
The formation constants of Li+, N+, K+, Mg2+ and Ca2+ phenoxyacetate complexes were determined potentiometrically using an (H+)-glass electrode at 10, 25, 37 and 45°C, at several ionic strengths, in the range 0.04?I? 0.9 mol 1?1. Simple empirical equations for the dependence of the formation constants on ionic strength were derived. From the temperature coefficients, estimates of ΔHo and ΔSo were obtained.  相似文献   

13.
Water self-diffusion and ion mobilities in various ionic forms (H+, Li+, Na+, Rb+, Cs+, and Ba2+) of perfluorinated sulfocationic membranes MF-4SK were studied by NMR and impedance spectroscopy. When degrees of hydration are low, the self-diffusion coefficients of water and ionic conductivities are considerably affected by the water content of the membrane. The self-diffusion coefficients decrease in the order H+ > Ba2+ > Cs+ > Rb+ > Na+ > Li+, whereas the ion mobility decreases in the order H+ > Li+ > Na+ > Cs+ > Ba2+.  相似文献   

14.
The complexation reaction of phenylaza-15-crwon-5, 4- nitrobenzo- 15-crown-5, and benzo-15-crown-5 with Ag+, Tl+ and Pb2+ ions in methanol solution have been studied by a competitive potentiometric method. The Ag+/Ag electrode used both as an indicator and reference electrode in a concentration cell. The emf of cell monitored as the crown ethers concentration varies through the titration. The stoichiometry and stability constants of resulting complexes have been evaluated by MINIQUAD. The stoichiometry for all resulting complexes was 1:1. The stability of these metal ions with derivatives of 15-crown-5 are in order phenylaza-15-crown-5 > Benzo-15-crown-5 > 4-nitrobenzo-15-crown-5, and for the each used crown ethers are as Pb2+ > Ag+ > Tl+. The effect of the substituted group on the stability of resulting complexes was considered. The obtained results are novel and interesting.  相似文献   

15.
The formation of MTar, MCit2– and M2Cit complexes (M is Na+ or K+) was established in reactions of aqueous solutions of citric and tartaric acids with sodium or potassium chloride solutions; their stability constants were determined by potentiometric titration in aqueous solution at 298.15 K and ionic strength 0.1 and 0.3 mol/l with tetraethylammonium chloride (TEACl) as a supporting electrolyte. Heat effects of reactions between citric acid solutions and sodium or potassium chlorides were measured by calorimetric method at 288.15, 298.15, and 308.15 K and at the ionic strength 0.1, 0.2, and 0.3 M TEACl. The increasing ionic strength was found to decrease exothermic effect of complex formation processes, while the temperature produced the opposite effect. Extrapolation to zero ionic strength was used to find thermodynamic stability constants and standard heat effects of complex formation reactions in solutions of oxyacids. The changes in entropy and heat capacity were calculated as well as standard enthalpies of formation of Na and K complexes of the indicated oxyacids in aqueous solution at 298.15 K.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 4, 2005, pp. 253–261.Original Russian Text Copyright © 2005 by Zelenina, Zelenin.  相似文献   

16.
The complexation reaction of dibenzopyridino-18-crown-6 (DBPY 18C6) with Co2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, and Ag+ have been studied in DMSO at 25°C by the spectrophotometric method. Murexide was used as a competitive colored ligand. The stoichiometry of metal ion-murexide and metal ions with DBPY18C6 complexes were estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. The stoichiometry of all the complexes was found to be 1: 1 (metal ion/ligand). The order of stability constants for the obtained metal ion-murexide complexes (1: 1) varies in the order Cu2+ > Cd2+ > Co2+ ∼ Pb2+ > Zn2+ > Ag+ > Hg2+. This trend shows that the transition metal ions clearly obey the Irving-Williams role. For the post-transition metal ions, the ionic radius and soft-hard behavior was the major affects in varying of this order. The dibenzopyridino-18-crown-6 complexes with the used metal ions vary as Ag+ > Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ > Co2+. The article is published in the original.  相似文献   

17.
Solubilities of ammonia in basic imidazolium ionic liquids   总被引:1,自引:0,他引:1  
Solubilities of ammonia in four conventional imidazolium ionic liquids: [Cnmim][BF4] (n = 2, 4, 6, 8) have been measured. Isothermally fixed temperatures are 293.15, 303.15, 313.15, 323.15 and 333.15 K; the pressure is from 0 to 1.0 MPa. High solubilities of ammonia are found, and it is also found that the solubilities of ammonia increase when the length of cations’ alkyl increases (the ILs have the same anion), that is: [C8mim]+ > [C6mim]+ > [C4mim]+ > [C2mim]+. The solubility data have been correlated by the Krichevisky–Kasarnovsky equation, and then Henry's constants and partial molar volumes of NH3 at infinite dilution are obtained. The thermodynamic properties such as solution enthalpy (ΔsolH), solution Gibbs free energy (ΔsolG), solution entropy (ΔsolS), and solution heat capacity (ΔsolCp) of these systems are obtained.  相似文献   

18.
The fluorescence from β- particle irradiation of cis- and trans-decalin containing benzene or toluene has been studied as a function of aromatic concentration from ⋍ 0.002 to 0.1 M and over a spectral range that encompasses both the solvent and aromatic fluorescence. By comparisons with the fluorescence obtained using sub-ionization excitation of the decalin, the effect of benzene and toluene to intrude into the geminate ion-pair decay process has been extracted and rate constants for their scavenging action obtained via fitting to the standard diffusion model. The rate constants are compared to those reported from microwave conductivity studies on the “escaped” mobile hole in these liquids. For the reaction between trans-decalin+ + toluene, the rates are in good agreement. However, for the reactions of either cis- or trans-decalin+ with benzene, the rate constants extracted from the fluorescence analysis are about an order of magnitude larger. The discrepancies suggest the existence of differences in the internal energies and structures of the decalin positive ions when observed on the very short time scale of geminate recombination (probed in the fluorescence measurements) and that which is observed on the much longer time scales that are probed in the microwave experiments.An analysis of the development of aromatic fluorescence permits extraction of the fraction of aromatic fluorescence that derives from ionic recombination (as opposed to energy transfer) and the averaged efficiency of this recombination. In all of the systems studied here the ionic fraction remains high (i.e. >;20%) even at millimolar concentrations of the aromatic.  相似文献   

19.
《Electrophoresis》2017,38(16):2025-2033
ACE and density functional theory were employed to study the noncovalent interactions of cyclic decapeptide glycine‐6‐antamanide ([Gly6]AA), synthetic derivative of native antamanide (AA) peptide from the deadly poisonous fungus Amanita phalloides , with small cations (Li+, Rb+, Cs+, NH4+, and Ca2+) in methanol. The strength of these interactions was quantified by the apparent stability constants of the appropriate complexes determined by ACE. The stability constants were calculated using the nonlinear regression analysis of the dependence of the effective electrophoretic mobility of [Gly6]AA on the concentration of the above ions in the BGE (methanolic solution of 20 mM chloroacetic acid, 10 mM Tris, pHMeOH 7.8, containing 0–70 mM concentrations of the above ions added in the form of chlorides). Prior to stability constant calculation, the effective mobilities measured at actual temperature inside the capillary and at variable ionic strength of the BGEs were corrected to the values corresponding to the reference temperature of 25°C and to the constant ionic strength of 10 mM. From the above ions, Rb+ and Cs+ cations interacted weakly with [Gly6]AA but no interactions of [Gly6]AA with univalent Li+ and NH4+ ions and divalent Ca2+ ion were observed. The apparent stability constants of [Gly6]AA‐Rb+ and [Gly6]AA‐Cs+ complexes were found to be equal to 13 ± 4 and 22 ± 3 L/mol, respectively. The structural characteristics of these complexes, such as position of the Rb+ and Cs+ ions in the cavity of the [Gly6]AA molecule and the interatomic distances within these complexes, were obtained by the density functional theory calculations.  相似文献   

20.
Water self-diffusion and ion mobilities in various ionic forms (H+, Li+, Na+, Rb+, Cs+, and Ba2+) of perfluorinated sulfocationic membranes MF-4SK were studied by NMR and impedance spectroscopy. When degrees of hydration are low, the self-diffusion coefficients of water and ionic conductivities are considerably affected by the water content of the membrane. The self-diffusion coefficients decrease in the order H+ > Ba2+ > Cs+ > Rb+ > Na+ > Li+, whereas the ion mobility decreases in the order H+ > Li+ > Na+ > Cs+ > Ba2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号