首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intrajoint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed, and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.  相似文献   

2.
Jia  Yonghao  Chen  Xiulong 《Nonlinear dynamics》2022,108(3):2161-2191
Nonlinear Dynamics - Contact and friction phenomena in clearance joint adversely affect mechanical performance and may even result in chaos within the mechanism. Analysis of nonlinear...  相似文献   

3.
A comprehensive combined numerical and experimental study on the dynamic response of a slider-crank mechanism with revolute clearance joints is presented and discussed in this paper to provide an experimental verification and validation of the predictive capabilities of the multibody clearance joint models. This study is supported in an experimental work in a test rig, which consists of a slider-crank mechanism with an adjustable radial clearance at the revolute joint between the slider and the connecting rod. The motion of the slider is measured with a linear transducer and an accelerometer. Dynamic tests at different operating crank speeds and with several clearance sizes are performed. The maximum slider acceleration, associated with the impact acceleration, is used as a measure of the impact severity. The obtained results demonstrate the dynamical behavior of a multibody mechanical system with a clearance joint. Finally, the correlation between the numerical and experimental results is presented and discussed leading to validated models of clearance revolute joints.  相似文献   

4.
Li  Bo  Wang  Min San  Gantes  Charis J.  Tan  U-Xuan 《Nonlinear dynamics》2022,108(2):887-910
Nonlinear Dynamics - The main goal of this work is to develop a comprehensive methodology for predicting wear in planar mechanical systems with multiple clearance joints and investigating the...  相似文献   

5.
固-液接触状态广泛存在于机床核心单元关键零部件的接触运动副中,精确获得固-液结合面法向接触刚度及阻尼参数是高档数控机床产品在研发阶段就存在的一个关键理论与技术问题,并且仍然尚未根本解决.固-液结合面在介观层面上表现为两个粗糙表面的接触,在微观层面上表现为微凸体之间的接触,并在中/重载荷作用下微凸体可能会发生弹性/弹塑性...  相似文献   

6.
A contact force model in the dynamic analysis of contactable cracks   总被引:2,自引:0,他引:2  
In this paper a finite element method in the time domain is proposed to analyze the dynamic response of contactable cracks. By this method, the contact normal stress caused by impact or contact of the crack faces can be directly obtained and then the motion of the model containing the contactable cracks can be calculated, and the processes of contact, slip and separation of the crack faces can also be correctly determined and simulated. The method proposed can be used to study the scattering problems of an elastic wave caused by the crack and the dynamic extension problems of the crack arising from impact or cyclic loading. Numerical examples indicate that the method is efficient and accurate enough. It is also shown that the effect of dynamic contact of crack faces on the motion of itself and the area near the crack is significant by comparing the results with the contact considered and neglected.  相似文献   

7.
The dynamic modeling and simulation of spatial rigid-multibody systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical, and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the system’s governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as an example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results, it is observed that the system’s performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.  相似文献   

8.
In this work a comprehensive methodology for dynamic modeling and analysis of planar multibody systems with lubricated revolute joints is presented. In general, this type of mechanical systems includes journal-bearings in which the load varies in both magnitude and direction. The fundamental issues associated with the theory of lubrication for dynamically loaded journal-bearings are revisited that allow for the evaluation of the Reynolds equation for dynamic regime. This approach permits the derivation of the suitable hydrodynamic force laws that are embedded into the dynamics of multibody systems formulation. In this work, three different hydrodynamic force models are considered, namely the Pinkus and Sternlicht approach for long journal-bearings and the Frêne et al. models for both long and short journal-bearings. Results for a planar slider?Ccrank mechanism with a lubricated revolute joint between the connecting-rod and slider are presented and utilized to discuss the assumptions and procedures adopted throughout the present study. Different test scenarios are taken into account with the purpose of performing a comparative study for quantifying the effect of the clearance size, lubricant viscosity, input crank speed and hydrodynamic force model on the dynamic response of multibody systems with lubricated revolute joints. From the global results obtained from computational simulations, it can be concluded that the clearance size, the lubricant viscosity and the operating conditions play a key role in predicting the dynamic behavior of multibody systems.  相似文献   

9.
Adhesion has been demonstrated to play an important role in contact and friction between objects at small scales. While various models have been established for adhesive contact under normal forces, studies on the adhesive contact under tangential force have been far fewer, which if any, are mostly confined to the non-slipping situations. In the present work, a model has been proposed for adhesive contact with local sliding under tangential forces. Herein, the onset of local sliding in adhesive contact has been addressed by assuming the nucleation of dislocations. By analogy with the emission of dislocations at a crack tip, the critical tangential force for the onset of sliding has been determined, and its effect on the evolution of contact size has also been studied. Comparison with relevant experiments has verified the validity of the present model.  相似文献   

10.
运用土动力学和结构动力学原理,同时考虑桩周土的弱化效应和桩-土界面的相对滑移效应,利用数理方程方法分别求解单桩与桩周近场土域及远场土域的振动方程,建立了竖向荷载作用下单桩动力阻抗函数的简化计算方法,提出了一种改进的非线性动力Winkler模型,确定了模型中各物理元件的参数,进而通过对比分析验证了计算模型的合理性,从而为桩-土-上部结构耦合系统的非线性分析奠定了基础。  相似文献   

11.
Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints. In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model.  相似文献   

12.
Institute of Cybernetics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 27, No. 9, pp. 106–114, September, 1991.  相似文献   

13.
The dynamic behavior of a harmonically excited, preloaded mechanical oscillator with dead-zone nonlinearity is described quantiatively. The governing strongly nonlinear differential equation is solved numerically. Damping coefficient-force ratio maps for two different values of the excitation frequency have been formed and the boundaries of the regions of different motion types are determined. The results have been compared with the results of the forced Duffing's equation available in the literature in order to identify the differences between cubic and dead-zone nonlinearities. Period-doubling bifurcations, which take place with a change of any of the system parameters, have been found to be the most common route to chaos. Such bifurcations follow the scaling rule of Feigenbaum. b half length of the clearance.  相似文献   

14.
With the rapid development of Micro-Electro-Mechanical System (MEMS), we enter a field in which the surface effects have dominated many of the micro-scale phenomena, and the adhesive contact is one of the focuses. In this paper, a feasible model for finite element computation is presented via a macroscopic and microscopic combination approach, in which the adhesive forces are simulated by some non-linear spring elements considering the softening stage. Two basic problems concerning the adhesion effect were considered; through specific quantitative analysis, the results show a consistency with the current elastic continuum theories of adhesion and a brief investigation into the effects of adhesion on plastic deformation and tangential contact will be carried out as well. The project supported by the National Natural Science Foundation of China (10172050, 90205022) and Key Grant Project of Chinese MoE (0306)  相似文献   

15.
Wu  Xuze  Sun  Yu  Wang  Yu  Chen  Yu 《Nonlinear dynamics》2020,99(3):1937-1958
Nonlinear Dynamics - Oblique collisions are more likely to happen in the realistic translational joint with clearance, compared to the full front impacts. It can be a quite demanding task to...  相似文献   

16.
17.
A neural network predictor investigation is presented for analyzing vibration parameters of a rotating system. The vibration parameters of the system, such as amplitude, velocity, and accelertion in the vertical direction, were measured at the bearing points. The system's vibration and noise were analyzed for different working conditions. The designed neural predictor has three layers, which are input, hidden, and output layers. In the hidden layer, 10 neurons were used for this approximation. The results show that the network can be used as an analyzer of such systems in experimental applications.  相似文献   

18.
研究了结构非线性振动及其控制系统的等效力学模型建立问题,对结构进行等效线性化处理;对状态变量的观测,仅测量结构的前几个位移。将随机激励和观测噪声等维化处理后,导出了结构非线性振动及其控制系统的等效力学模型。通过等效力学模型的应用研究,得出了多高层结构在风与地震作用下的多维与一维等效力学模型、等效振型力学模型及其线性力学模型,给出了等效力学模型在多高层结构自适应抗风抗震控制中的应用。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号