首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hetero growth of Ge on Si results in formation of 3D clusters with an uncontrolled defect structure. Introduction of a monolayer of a surfactant completely changes the growth mode to a 2D-layer growth (Frankvan der Merwe) with a continuous and smooth Ge film on Si(111). The surfactant is not incorporated but segregates and floates on the growing Ge film. The saturation of the dangling bonds of the semiconductor reduces the surface free energy and drives the strong segregation. The effect on the growth process is the selective change of activation energies which are important for diffusion and the mobility of the Ge. Up to a thickness of 8 MLs (MonoLayers) the misfit-related strain of the pseudomorphic Ge film is relaxed by formation of a micro rough surface. This allows a partial relaxation of the Ge towards its bulk lattice constant which would not be possible for a flat and continuous film. For thicker Ge films the misfit of 4.2% is relieved by a periodic dislocation network, which is confined to the Si-Ge interface. Ge-films thicker than 20 MLs are free of defects and completely relaxed to the Ge bulk lattice constant: a model system for perfect heteroepitaxial growth.  相似文献   

2.
Intrinsic stress of ultrathin epitaxial films   总被引:3,自引:0,他引:3  
The present article focuses on the stress developing during the deposition of ultrathin epitaxial films in the thickness range of a few atomic layers. The studied systems exhibit the three well-known modes of film growth: Stranski–Krastanow mode [Ge/Si(001), Ge/Si(111), Ag/Si(111)], Frank–Van der Merwe mode [Fe/MgO(001)] and Volmer–Weber mode [Ag/mica(001), Cu/mica(001)]. The experimental results demonstrate the important role of the misfit strain as well as the contribution of surface stress effects as mechanisms for the stress in single atomic layers. Received: 26 April 1999 / Accepted: 25 June 1999 / Published online: 6 October 1999  相似文献   

3.
A model for determining the critical thickness of a film h c is developed to introduce misfit dislocations in the slip planes of a film and a substrate parallel to the interphase boundary (111). Experimental values h c that agree with calculated values are determined for the Ge/Si(111) and Si3N4/Ge(111) heterosystems. The two-level epitaxial growth of Ge on Si is attained in the regime of combining the step-layer and 2D island growth mechanisms.  相似文献   

4.
We present kinetic lattice Monte Carlo simulations of Ge deposition onto a reconstructed Si (1 0 0) surface. We account for the exchange of Ge with Si atoms in the substrate, considering two different exchange mechanisms: a dimer exchange mechanism whereby Ge–Ge dimers on the surface become intermixed with substrate Si atoms, and the exchange of Ge atoms below the surface to relieve misfit strain. We examine how Si–Ge exchange affects the interface between the materials when the growth simulations are done at different temperatures.  相似文献   

5.
Ge condensation process of a sandwiched structure of Si/SiGe/Si on silicon-on-insulator (SOI) to form SiGe-on- insulator (SGOI) substrate is investigated. The non-homogeneity of SiGe on insulator is observed after a long time oxidation and annealing due to an increased consumption of silicon at the inflection points of the corrugated SiGe film morphology, which happens in the case of the rough surface morphology, with lateral Si atoms diffusing to the inflection points of the corrugated SiGe film. The transmission electron microscopy measurements show that the non-homogeneous SiGe layer exhibits a single crystalline nature with perfect atom lattice. Possible formation mechanism of the non-homogeneity SiGe layer is presented by discussing the highly nonuniform oxidation rate that is spatially dependent in the Ge condensation process. The results are of guiding significance for fabricating the SGOI by Ge condensation process.  相似文献   

6.
7.
Preferential sputtering and recoil mixing of a Pt25Ni75(111) single crystal surface leads to platinum enrichment in the upper monolayers, thereby increasing the lattice constant in these layers. This results in subsurface lattice mismatch dislocations, which have been studied by scanning tunneling microscopy. While the subsurface dislocations are only visible as shallow ditches in STM topographs, the Burgers vectors of the dislocation system can be determined by means of atomically resolved images of dislocations reaching the surface. A comparison with simulations of lattice relaxation using embedded-atom potentials shows good agreement with STM data and further allows the determination of the thickness of the Pt enrichment. We have estimated the Pt concentration in these layers from the dislocation density and studied the annealing behaviour of the surface.  相似文献   

8.
Incorporating self-assembled Ge islands on Si surfaces into electronic devices has been suggested as a means of forming small features without fine-scale litho- graphy. For use in electronic devices, the electrical properties of the deposited Ge and their relation to the underlying Si substrate must be known. This report presents the results of a surface photovoltage investigation of the surface energy barrier as increasing amounts of Ge are added to a Si surface by chemical vapor deposition. The results are interpreted in terms of band discontinuities and surface states. The surface barrier increases as a wetting layer is deposited and continues to increase as defect-free islands form. It saturates as the islands grow. As the amount of Ge continues increasing, defects form, and the surface barrier decreases because of the resulting allowed states at the Ge/Si interface. Qualitatively similar behavior is found for Si(001) and Si(111). Covering the Ge with Si reduces the surface-state density and possibly modifies the wetting layer, decreasing the barrier to one more characteristic of Si. Initial hydrogen termination of the surface decreases the active surface-state density. As the H desorbs, the surface barrier increases until it stabilizes as the surface oxidizes. The behavior is briefly correlated with scanning-tunneling spectroscopy data. Received: 13 November 2000 / Accepted: 14 November 2000 / Published online: 23 May 2001  相似文献   

9.
S. A. Teys 《JETP Letters》2013,96(12):794-802
The intermediate stages of the formation of a Ge wetting layer on Si(111) and Si(100) surfaces under quasiequilibrium grow conditions have been studied by means of scanning tunneling microscopy. The redistribution of Ge atoms and relaxation of mismatch stresses through the formation of surface structures of decreased density and faces different from the substrate orientation have been revealed. The sites of the nucleation of new three-dimensional Ge islands after the formation of the wetting layer have been analyzed. Both fundamental differences and common tendencies of atomic processes at the formation of wetting layers on Si(111) and Si(100) surfaces have been demonstrated. The density of three-dimensional nuclei on the Si(111) surface is determined by changed conditions for the surface diffusion of Ge adatoms after change in the surface structure. Transition to three-dimensional growth on the Si(100) surface is determined by the nucleation of single {105} faces on the rough Ge(100) surface.  相似文献   

10.
In this paper, we summarize the results on the surfactant-mediated epitaxy (SME) of germanium on (0 0 1) and (1 1 1) silicon substrates. Then, we discuss, how the surfactant-controlled development of micro-facets determines the strain relaxation process. We place particular emphasis on the different types of strain-compensating dislocation networks that form at the Ge/Si(0 0 1) interface in epitaxy with and without Sb as a surfactant. At elevated temperatures, high Sb-coverage promotes the generation of a regular array of edge type misfit dislocations, which allows for abrupt instead of gradual strain relaxation in the initial stage of growth.  相似文献   

11.
Growth mechanism and morphology of Ge on Pb covered Si(111) surfaces   总被引:1,自引:0,他引:1  
We study the mechanism and surface morphology in epitaxial growth of Ge on Pb covered Si(111) using a scanning tunneling microscope (STM). We find that Ge adatoms have a very large diffusion length at room temperature. The growth is close to perfect layer-by-layer for the first two bilayers. Surface roughness increases gradually with the film thickness, but no 3D islands are found at room temperature. For growth at 200°C, 3D Ge islands appear after completion of the second bilayer. At room temperature, we believe, the Pb layer enhances surface diffusion and the descending-step motion of Ge adatoms, but the ascending-step motion is hindered and thus 3D island growth is suppressed.  相似文献   

12.
Silicon-germanium layers are grown from metallic solution on (100) and (111) silicon substrates. On (111) Si, coherently strained dislocation-free SiGe layers are obtained with thicknesses larger than predicted by the current models of misfit-induced strain relaxation. A comprehensive characterisation by imaging, diffraction, and analytical electron microscopy techniques is carried out to determine the critical thickness, study the onset of plastic relaxation, and explain the particular growth mechanisms leading to an unexpectedly high thickness of elastically strained SiGe layers. A vertical Ge concentration gradient and the formation of step edges on the layers, where lateral strain relaxes locally, explain the high critical thickness. The model of Matthews and Blakeslee is modified in order to match the experimental observations for solution-grown SiGe layers. Received: 29 July 1999 / Accepted: 29 July 1999 / Published online: 27 October 1999  相似文献   

13.
利用原子力显微镜分析了ZnO薄膜在具有本征氧化层的Si(100)和Si(111)基片上的表面形貌 随沉积时间的演化. 通过对薄膜生长形貌的动力学标度表征,研究了射频反应磁控溅射条件 下,ZnO薄膜的成核过程及生长动力学行为. 研究发现,ZnO在基片表面的成核过程可分为初 期成核阶段、低速率成核阶段和二次成核阶段. 对于Si(100)基片,三个成核阶段的生长指 数分别为β1=1.04,β2=0.25±0.01,β3=0.74;对 于Si(11 关键词: ZnO薄膜 磁控溅射 生长动力学 成核机制  相似文献   

14.
The growth of Ge and SiGe alloy films on Si substrates has attracted considerable interest in the last years because of their importance for optoelectronic devices as well as Si-based high speed transistors. Here we give a short overview on our recent real time stress measurements of Ge and SiGe alloy films on Si(0 0 1) performed with a sensitive cantilever beam technique and accompanied by structural investigations with atomic force microscopy. Characteristic features in the stress curves provide detailed insight into the development and relief of the misfit strain. For the Stranski–Krastanow system Ge/Si(0 0 1) as well as for SiGe films with Si contents below 20%, the strain relaxation proceeds mainly into two steps: (i) by the formation of 3D islands on top of the Ge wetting layer; (ii) via misfit dislocations in larger 3D islands and upon their percolation.  相似文献   

15.
We propose a two-step process, which is based on substrate nano-patterning by means of growth instabilities in a first step and self-assembling of Ge dots on the top of surface instabilities in a second step. We used the instabilities that develop during the growth of Si(Ge) layers on both nominal and vicinal Si (1 1 1) or (0 0 1) surfaces. Depending on the growth conditions (Ge concentration, growth temperature, thickness), various growth instability regimes were observed: pure kinetic regime, kinetically activated strain-induced regime and pure strain-driven regime. In the case of Si/Si growth, kinetic instabilities developed at different growth temperatures depending on the surface orientation. The critical exponents describing evolution with time have been determined: amplitude Atβ and wavelength Ltα. Experimental results show that each instability regime appears for a given growth temperature range that critically depends on the concentration of Ge. Evolution with time also depends on the Ge concentration. But in all cases, we evidence discrepancies between the experimental critical exponents and those predicted by classical modelling. We also give some examples of Ge dots self-organization on substrates nano-patterned (periodically undulated) by means of the different growth instabilities described above. In all cases, we observe Ge dots ordering along the substrate undulations due to step and/or strain effects. On kinetic instabilities (Si/Si(0 0 1) vicinal), Ge islands preferentially nucleate on step bunches. On SiGe(0 0 1) template layers, Ge dots nucleate on top of the SiGe undulations. In that case, strain gradients improved island ordering. The best ordering was achieved using SiGe(0 0 1) 10° off misoriented template layers as a result of almost perfect anisotropic morphology.  相似文献   

16.
We have deposited CdTe films by laser-assisted epitaxy approach and investigated the influence of substrate and film thickness on the film properties. Grown on Si(001), GaAs(001), and quartz substrates; the CdTe films exhibit preferential orientation along the cubic CdTe(111) direction. When the films are thin (<500 nm), a blueshift of the band gap and splitting of valence bands were observed. These results are attributed to the existence of residual strains induced by mismatch of the film lattice constant with that of the substrate, and by their difference in thermal expansion coefficients. The bulk band-gap energy of 1.5 eV was achieved on the surface of thick CdTe films grown on Si(001) substrate, indicating that strain was almost completely relaxed in this case. Our results demonstrate that by a proper selection of substrate and film thickness it is possible to grow film semiconductors with band gap approaching those of bulk crystals.  相似文献   

17.
The reconstruction and the phase transition are discussed on the (111) surfaces of Si and Ge by the use of the lattice gas model on a triangular net. A Monte Carlo simulation calculation is carried out of the lattice gas model. It is shown that the characteristic diffuse scattering of electrons in the (1x1) phase of Ge(111) can be reproduced by the model. Moreover, the underlying mechanism is discussed in terms of particle arrangements divided into irregular hexagon-like (2x2) domains which yield the diffuse patterns in the (1x1) phase. For the Si(111) surface, on the other hand, the calculation concludes the absence of stacking faults in the (1x1) state. The interrelation between the reconstructions of the surfaces is also discussed.  相似文献   

18.
利用掠入射荧光X射线吸收精细结构(XAFS)方法研究了在400℃的温度下分子束外延生长的Si/Gen/Si(001)异质结薄膜(n=1,2,4和8个原子层)中Ge原子的局域环境结构.结果表明,在1至2个Ge原子层(ML)生长厚度的异质结薄膜中,Ge原子的第一近邻配位主要是Si原子.随着Ge原子层厚度增加到4ML,Ge原子的最近邻配位壳层中的Ge-Ge配位的平均配位数增加到1.3.当Ge原子层厚度增加到8ML时,第一配位壳层中的Ge-Ge配位占的比例只有55%.这表明在400℃的生长条件下,Ge原子有很强的迁移到Si覆盖层的能力.随着Ge层厚度从1 增加到2,4和8ML,Ge原子迁移到Si覆盖层的量由0.5ML分别增加到1.5,2.0和3.0ML.认为在覆盖Si过程中Ge原子的迁移主要是通过产生Ge原子表面偏析来降低表面能和Ge层的应变能. 关键词: XAFS n/Si(001)异质膜')" href="#">Si/Gen/Si(001)异质膜 迁移效应  相似文献   

19.
吴黎黎  吴锋民 《计算物理》2013,30(3):441-446
用动态Monte-Carlo方法对Ge在单层表面活性剂Pb覆盖的Si(111)表面上沿团簇边缘扩散进行三维模拟.重点讨论Ge原子是否沿团簇边缘扩散,沿边缘扩散时的最大扩散步数及最近邻原子数对三维生长的影响,并计算薄膜表面粗糙度研究三维生长模式.模拟表明Ge沿团簇边缘扩散的行为对薄膜生长模式的影响很大,同时讨论了ES势对三维生长模式的影响.  相似文献   

20.
Infrared absorption measurements using a multiple internal reflection geometry are reported for condensed methanol at 90 K on Ag island films deposited on the oxidized and hydrogen-terminated surfaces of Si(111). The attenuated total reflection (ATR) spectra obtained as a function of methanol exposure (up to 14 L) show that a 1-nm mass thickness of Ag island film on the oxidized Si(111) surface yields an absorption intensity 2–3 times larger than the intensity in the absence of Ag on the oxidized surface. Deposition of the same thickness of Ag on the hydrogen-terminated Si(111) surface results in approximately twice the enhancement. The different magnitudes of the enhancement are discussed based on SEM micrographs for Ag island films formed on the oxidized and H-terminated Si(111) surfaces. Received: 1 March 1999 / Accepted: 8 March 1999 / Published online: 5 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号