首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The problem of shock expansion of cavities in geological or geologically derived media is of fundamental interest because it is closely related to the blast problem (propagation of waves from an explosion source) as well as to crater formation by hypervelocity projectile impact. Since rock and cementitious materials exhibit very strong high-rate and high-confinement sensitivities, those effects cannot be neglected in a realistic analysis of penetration events. In this paper a new model for the shock expansion of a spherical cavity in an infinite medium that displays very strong high-rate and high-confinement sensitivities is proposed. Waves are generated by an instantaneous rise of the pressure at the surface of the cavity.  相似文献   

2.
研究了平面SH波在半空间双相弹性介质中的传播。通过Green函数和积分方程方法,按照复变函数描述,对透射波被圆孔散射的情况进行稳态分析。将双相介质半空间沿界面剖分为1/4空间介质Ⅰ和含圆孔的1/4空间介质Ⅱ,分别构造了介质Ⅰ和介质Ⅱ中反平面点源荷载的Green函数,按双相介质中平面SH波的处理方法,给出介质Ⅰ和介质Ⅱ中的平面位移波,两种介质之间的相互作用力与对应Green函数的乘积沿界面的积分与平面位移波叠加得到介质Ⅰ和介质Ⅱ中的全部位移场。按照界面的位移连续条件,定解积分方程组,得到问题的稳态解,并给出圆孔位置和介质参数对散射的影响。  相似文献   

3.
The propagation of spherical waves in an isotropie elastic medium has been studied sufficiently completely (see, e.g., [1–4]). it is proved [5, 6] that in imperfect solid media, the formation and propagation of waves similar to waves in elastic media are possible. With the use of asymptotic transform inversion methods in [7] a problem of an internal point source in a viscoelastic medium was investigated. The problem of an explosion in rocks in a half-space was considered in [8]. A numerical Laplace transform inversion, proposed by Bellman, is presented in [9] for the study of the action of an explosive pulse on the surface of a spherical cavity in a viscoelastic medium of Voigt type. In the present study we investigate the propagation of a spherical wave formed from the action of a pulsed load on the internal surface of a spherical cavity in a viscoelastic half-space. The potentials of the waves propagating in the medium are constructed in the form of series in special functions. In order to realize viscoelasticity we use a correspondence method [10]. The transform inversion is carried out by means of a representation of the potentials in integral form and subsequent use of asymptotic methods for their calculation. Thus, it becomes possible to investigate the behavior of a medium near the wave fronts. The radial stress is calculated on the surface of the cavity.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 139–146, March–April, 1976.  相似文献   

4.
The problem of the long-term strength of an extended thick-walled tube containing a corrosive medium in the internal cavity is solved. The diffusion of this medium into the tube material is analyzed. The diffusion equation is solved approximately by introducing the diffusion front, and the error of the solution is estimated. The dependence of the time of fracture of the tube on the variable tensile stress and the concentration of the medium filling the cavity is obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 88–93, July–August, 2007.  相似文献   

5.
This paper is concerned with mathematical modeling and solution of the problem of the collapse of a spherical cavity in a viscoelastic medium under the action of constant pressure at infinity. A differential equation of motion for the cavity boundary is constructed and solved numerically. The existence of three modes of motion of the boundary is established, and a map of these modes in the plane of the determining parameters is constructed. Asymptotic forms of the solutions of the problem for all modes are constructed. The problem of cavity collapse with capillary forces taken into account is formulated and solved. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 93–101, September–October, 2008.  相似文献   

6.
A two-dimensional, transient, uncoupled thermoelastic problem of an infinite medium with a circular nano-scale cavity is considered. The analysis is based on the generalized Gurtin and Murdoch model [Murdoch, A.I., 2005. Some fundamental aspects of surface modelling. Journal of Elasticity 80, 33–52.] where the surface of the cavity possesses its own surface tension and thermomechanical properties. A semi-analytical solution for the problem is obtained using a complex variable boundary integral equation method and the Laplace transform. Several examples are presented to study the significance of surface thermomechanical properties and surface tension, and to compare the results obtained using the generalized Gurtin and Murdoch model and a thin interphase layer model.  相似文献   

7.
We study the influence of a constant axial magnetic field on the propagation of magnetoelastic compression waves from a cavity containing a magnetoacoustic medium with a jump of the surface force given at the wall. The problem is examined in [1] in the case in which there is a vacuum in the cavity and an ideal conductor outside, without any study of the effect of a magnetic field.Here we examine the problem for both weak and ideal conductivities. The equations are linearized and Laplace transformed. Approximate asymptotic solutions are constructed which are valid in the vicinity of the wave fronts. The solutions are studied analytically and numerically.In conclusion the author wishes to thank Ya. S. Uflyand for discussions of certain questions.  相似文献   

8.
We present numerical results for the finite oscillations of a hyperelastic spherical cavity by employing the governing equations for finite amplitude oscillations of hyperelastic spherical shells and simplifying it for a spherical cavity in an infinite medium and then applying a fourth-order Runge-Kutta numerical technique to the resulting non-linear first-order differential equation.The results are plotted for Mooney-Rivlin type materials for free and forced oscillations under Heaviside type step loading. The results for Neo-Hookean materials are also discussed. Dependence of the amplitudes and frequencies of oscillations on different parameters of the problem is also discussed in length.  相似文献   

9.
Local thermal non-equilibrium (LTNE) may have profound effects on the pore pressure and thermal stresses in fluid saturated porous media under transient thermal loads. This work investigates the temperature, pore pressure, and thermal stress distributions in a porous medium subjected to convective cooling/heating on its boundary. The LTNE thermo-poroelasticity equations are solved by means of Laplace transform for two fundamental problems in petroleum engineering and nuclear waste storage applications, i.e., an infinite porous medium containing a cylindrical hole or a spherical cavity subjected to symmetrical thermo-mechanical loads on the cavity boundary. Numerical examples are presented to examine the effects of LTNE under convective cooling/heating conditions on the temperature, pore pressure and thermal stresses around the cavities. The results show that the LTNE effects become more pronounced when the convective heat transfer boundary conditions are employed. For the cylindrical hole problem of a sandstone formation, the thermally induced pore pressure and the magnitude of thermal stresses are significantly higher than the corresponding values in the classical poroelasticity, which is particularly true under convective cooling with moderate Biot numbers. For the spherical cavity problem of a clay medium, the LTNE effect may become significant depending on the boundary conditions employed in the classical theory.  相似文献   

10.
We determine the electrostressed state of a piezoceramic medium with an arbitrarily oriented triaxial ellipsoidal inclusion under homogeneous mechanical and electric loads. Use is made of Eshelby’s equivalent inclusion method generalized to the case of a piezoelectric medium. Solving the problem for a spheroidal cavity with the axis of revolution aligned with the polarization axis demonstrates the high efficiency of the approach. A numerical analysis is carried out. The stress distribution along the surface of the arbitrarily oriented triaxial ellipsoidal inclusion is studied  相似文献   

11.
This paper presents the problem of thermoelastic interactions in an elastic infinite medium with cylindrical cavity at an elevated temperature field arising out of a ramp-type heating and loading bounding surface of the cavity, and the surface is assumed initially quiescent. The governing equations are taken in a unified system from which the field equations for coupled thermoelasticity as well as for generalized thermoelasticity can be easily obtained as particular cases. Due attention has been paid to the finite time of rise of temperature, stress, displacement, and strain. The problem has been solved analytically using a direct approach. The derived analytical expressions have been computed for a specific situation. Numerical results for the temperature distribution, thermal stress, displacement, and strain are represented graphically. A comparison is made with the results predicted by the three theories.  相似文献   

12.
The problem of the motion of a cavity in a plane-parallel flow of an ideal liquid, taking account of surface tension, was first discussed in [1], in which an exact equation was obtained describing the equilibrium form of the cavity. In [2] an analysis was made of this equation, and, in a particular case, the existence of an analytical solution was demonstrated. Articles [3, 4] give the results of numerical solutions. In the present article, the cavity is defined by an infinite set of generalized coordinates, and Lagrange equations determining the dynamics of the cavity are given in explicit form. The problem discussed in [1–4] is reduced to the problem of seeking a minimum of a function of an infinite number of variables. The explicit form of this function is found. In distinction from [1–4], on the basis of the Lagrauge equations, a study is also made of the unsteady-state motion of the cavity. The dynamic equations are generalized for the case of a cavity moving in a heavy viscous liquid with surface tension at large Reynolds numbers. Under these circumstances, the steady-state motion of the cavity is determined from an infinite system of algebraic equations written in explicit form. An exact solution of the dynamic equations is obtained for an elliptical cavity in the case of an ideal liquid. An approximation of the cavity by an ellipse is used to find the approximate analytical dependence of the Weber number on the deformation, and a comparison is made with numerical calculations [3, 4]. The problem of the motion of an elliptical cavity is considered in a manner analogous to the problem of an ellipsoidal cavity for an axisymmetric flow [5, 6]. In distinction from [6], the equilibrium form of a flat cavity in a heavy viscous liquid becomes unstable if the ratio of the axes of the cavity is greater than 2.06.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 15–23, September–October, 1973.The author thanks G. Yu. Stepanov for his useful observations.  相似文献   

13.
In this work, we study a one-dimensional problem in a generalized thermoelastic diffusion in infinite medium with a spherical cavity subjected to a time dependent thermal shock of its internal boundary which is assumed to be traction free. The chemical potential is also assumed to be a known function of time on the bounding cavity. Laplace transform techniques are used. The solution of the problem in the transformed domain is obtained by using a direct approach without the customary use of potential functions. By means of numerical Laplace inversion, the problem is solved in the physical domain. Numerical results predict finite speeds of propagation for thermoelastic and diffusive waves. To investigate the diffusions effects, a comparison is made with the results obtained in the thermoelastic problem.  相似文献   

14.
The stress-concentration problem for an elastic orthotropic medium containing an ellipsoidal cavity is solved. The stress state in the elastic space is represented as a superposition of the principal state and the perturbed state due to the cavity. The equivalent-inclusion method, the triple Fourier transform in spatial variables, and the Fourier-transformed Green function for an infinite medium are used. Double integrals over a finite domain are evaluated using the Gaussian quadrature formulas. The results for particular cases are compared with those obtained by other authors. The influence of the geometry of the cavity and the elastic properties of the material on stress concentration is studied__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 3, pp. 93–100, March 2005.  相似文献   

15.
A two-dimensional problem of the flow of a gas containing an impurity through a porous medium is considered. At the initial time, the gas containing a uniformly distributed impurity is at a high pressure in a spherical cavity in a porous medium at a certain distance from a flat surface. It is assumed that for t > the motion of the carrier gas is described by the system of equations for flow in a porous medium and the dispersion of the impurity is described by the equations of convective diffusion and nonequilibrium adsorption. A numerical method for solving the problem is discussed. Some results of calculations are given. The influence of the flat surface on the flow of the gas and the dispersion of the impurity is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 61–67, September–October, 1982.We thank V. N. Nikolaevskii for comments which permitted a significant improvement in the paper.  相似文献   

16.
We have used the perturbation method as the basis for obtaining an approximate solution of the three-dimensional problem for a physically nonlinear elastic medium with an elastic inclusion under uniform tension— compression. From this solution, we can obtain as a special case a solution for an elastic medium with a stress-free cavity and for an elastic medium with a rigid inclusion. We have plotted the normal and tangential stresses as a function of the radius and the ratio of shear moduli for the inclusion and the medium. We have investigated their behavior under different loading conditions. Translated from Prikladnaya Mekhanika, Vol. 34, No. 11, pp. 46–51, November, 1998.  相似文献   

17.
The steady-state motion of a bubble (a cavity free from suspended particles and occupied solely by the liquid phase) in a fluidized bed of uniform concentration is considered. The change in the shape of the bubble which takes place as it rises through the fluidized bed is established; the rising velocity is determined for both large and small bubbles. The basic parameter characterizing the shape of a large bubble in either a fluidized bed or a homogeneous liquid is calculated. This, in particular, enables the well-known Taylor problem of a large drop or bubble in an unlimited medium to be solved.  相似文献   

18.
The problem of steady rotation of a compositesphere located at the centre of a spherical container has beeninvestigated.A composite particle referred to in this paperis a spherical solid core covered with a permeable sphericalshell.The Brinkman’s model for the flow inside the composite sphere and the Stokes equation for the flow in the spherical container were used to study the motion.The torque experienced by the porous spherical particle in the presence ofcavity is obtained.The wall correction factor is calculated.In the limiting cases,the analytical solution describing thetorque for a porous sphere and for a solid sphere in an unbounded medium are obtained from the present analysis.  相似文献   

19.
The stationary motion of a gas cavity in an ideal incompressible fluid is studied taking account of surface tension by using a variational equation. Approximate analytical dependences of the dimensionless parameters on the degree of cavity deformation are obtained. It is shown that the variational equation admits of an exact analytical solution. The stability of motion corresponding to the exact solution is proved relative to arbitrary perturbations in the cavity shape. A solution is given for the problem of stationary motion of an elliptical cavity in a gravity viscous fluid and the stability problem is investigated. Dependences are found for the velocity of cavity rise, the Reynolds number, and the Froude number as a function of the cavity size.  相似文献   

20.
This paper describes the problem of a stress–strain state arising from expansion of a spherical cavity under increasing internal pressure. The properties of a medium are described by a single curve with a descending section (Hencky medium with softening) under the condition of nonpositivity of volume deformation. An iteration procedure for calculation of equilibrium parameters is proposed. This procedure is based on the method of simple iterations. Numerical calculations confirming the developed technique are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号