首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of laser-ablated Mn, Fe, Co, and Ni atoms with H(2)O(2) and with H(2) + O(2) mixtures in excess argon give new absorptions in the O-H and M-O stretching regions, which are assigned to metal dihydroxide and trihydroxide molecules, M(OH)(2) and M(OH)(3). Isotopic substitutions (D(2)O(2), (18)O(2), (16,18)O(2), D(2)) confirmed the assignments and DFT calculations reproduced the experimental results. The O-H stretching frequencies decreased in the dihydroxides from Sc to Zn. Mulliken and natural charge distributions indicate significant electron transfer from metal d orbitals to OH ligands that decreases from Sc to Zn, suggesting that the early transition metal hydroxides are more ionic and that the later transition metal hydroxides are more covalent.  相似文献   

2.
Reactions of laser-ablated Y and La atoms with H2O2 gives the M(OH)2 and M(OH)3 molecules and the HOMO dehydration product, and the cation M(OH)2+ in solid argon. Density functional calculations show that the dihydroxide molecules and cations are bent at the metal center, and the symmetric and antisymmetric O-H stretching modes are both observed in the infrared spectra. The trihydroxide molecules have calculated C(3h) structures characterized by strong antisymmetric O-H and M-O stretching modes. Mulliken charges increase for all product molecules going down the Group 3 family and increase as one, two, and three OH ligands are bonded to the metal center. Evidence is also presented for the Y(OH)4- anion.  相似文献   

3.
Group 2 metal atoms (Mg, Ca, Sr, and Ba) react on ultraviolet photoexcitation with O(2), H(2) mixtures in solid argon at 10 K to produce new absorptions in the O-H and O-M-O stretching regions. The effect of detailed isotopic substitution on these two absorptions identifies the M(OH)(2) molecules. The stepwise decrease in the O-H stretching modes in this chemical family demonstrates an increase in ionic character, which parallels the increase in base strength for the analogous solid compounds.  相似文献   

4.
Reactions of laser-ablated Mg, Ca, Sr, and Ba atoms with O2 and H2 in excess argon give new absorptions in the O-H and O-M-O stretching regions, which increase together upon UV photolysis and are due to the M(OH)2 molecules (M = Mg, Ca, Sr, and Ba). The same product absorptions are observed in the metal atom reactions with H2O2. The M(OH)2 identifications are supported by isotopic substitution and theoretical calculations (B3LYP and MP2). The O-H stretching frequencies of the alkaline earth metal dihydroxide molecules decrease from 3829.8 to 3784.6 to 3760.6 to 3724.2 cm(-1) in the family series in solid argon, while the base strength of the solid compounds increases. Calculations show that Sr(OH)2 and Ba(OH)2 are bent at the metal center, owing to d orbital involvement in the bonding. Although these molecules are predominantly ionic, the O-H stretching frequencies do not reach the ionic limit of gaseous OH- going down the family group because of cation-anion polarization and p(pi) --> d(pi) interactions.  相似文献   

5.
Reactions of laser-ablated Al, Ga, In, and Tl atoms with H2O2 and with H2 + O2 mixtures diluted in argon give new absorptions in the O-H and M-O stretching and O-H bending regions, which are assigned to the metal mono-, di-, and trihydroxide molecules. Isotopic substitutions (D2O2, 18O2, 16,18O2, HD, and D2) confirm the assignments, and DFT calculations reproduce the experimental results. Infrared spectra for the Al(OH)(OD) molecule verify the calculated C2v structure. The trihydroxide molecules increase on annealing from the spontaneous reaction with a second H2O2 molecule. Aluminum atom reactions with the H2 + O2 mixtures favor the HAl(OH)2 product, suggesting that AlH3 generated by UV irradiation combines with O2 to form HAl(OH)2.  相似文献   

6.
Wang X  Andrews L 《Inorganic chemistry》2005,44(24):9076-9083
Laser-ablated Cu, Ag, and Au atoms react with H2O2 and with H2 + O2 molecules during condensation in excess argon to give four new IR absorptions in each system (O-H stretch, M-O-H bend, O-M-O stretch, and M-O-H deformation modes) that are due to the coinage metal M(OH)2 dihydroxide molecules. Isotopic substitution (D2O2, 18O2, 16O18O, D2, and HD) and comparison with frequencies computed by DFT verify these assignments. The calculations converge to 2B(g) ground electronic state structures with C2h symmetry, 111-117 degrees M-O-H bond angles, and substantial covalent character for these new metal dihydroxide molecules, particularly for Au(OH)2. This is probably due to the high electron affinity of gold owing to the effect of relativity.  相似文献   

7.
Products in the reactions of H2O2 and H2, O2 mixtures have been observed by matrix infrared absorptions and identified through comparisons with vibrational frequencies calculated for these molecules. The chromium reactions are dominated by lower oxidation state products, whereas molybdenum and tungsten chemistry favors higher oxidation state products. For example chromium dihydroxide, Cr(OH)2, molybdenum hydride oxide, H2MoO2, and tungsten hydride oxide, H2WO2, were observed in laser-ablated metal atom reactions with H2O2, and calculations show that these are the most stable molecules for this stoichiometry. Chromium monohydroxide, CrOH, was identified through O-H and Cr-O stretching modes, while HWO was observed by W-H and W=O stretching modes. The metal oxyhydroxides, HMO(OH), were observed for all metals. However, reactions with two H2O2 molecules give OCr(OH)2, MoO2(OH)2, and WO2(OH)2. The relative stabilities of different structures for Cr, Mo, and W are due to different participations of occupied d orbitals. The reactivity of the cold metal atoms with H2O2 on annealing the solid argon matrix increases on going down the group.  相似文献   

8.
Hafnium and zirconium atoms react with H(2)O(2) molecules and with H(2) + O(2) mixtures to form M(OH)(2) and M(OH)(4) molecules, which are trapped in solid argon and identified from isotopic shifts in the infrared spectra. Electronic structure calculations at the MP2 level converge to almost linear M(OH)(2) and tetrahedral M(OH)(4) molecules and predict vibrational frequencies for mixed isotopic molecules of lower symmetry that are in excellent agreement with experimental measurements, thus substantiating the identification of hafnium and zirconium dihydroxide and tetrahydroxide molecules. Titanium atoms react to give the same product molecules, but Ti(OH)(4) has an S(4) structure with bent Ti-O-H bonds, Ti(OH)(2) appears to be nearly linear, and the more stable tetravalent HM(O)OH isomer is more prominent for Ti. The Group 4 tetrahydroxides reported here are the first examples of pure metal tetrahydroxide molecules.  相似文献   

9.
The reactions of early lanthanide metal atoms Nd, Sm, and Eu with water molecules have been investigated using matrix isolation infrared spectroscopy and density functional calculations. The reaction intermediates and products were identified on the basis of isotopic labeled experiments and density functional frequency calculations. The ground state metal atoms react with water to form the M(H2O) and M(H2O)(2) complexes spontaneously on annealing (M = Nd, Sm, Eu). The M(H2O) complexes isomerize to the inserted HMOH molecules under red light irradiation, which further decompose to give the metal monoxides upon UV light irradiation. The Nd(H2O)(2) complex decomposes to form the trivalent HNd(OH)(2) molecule, while the Sm(H2O)(2) and Eu(H2O)(2) complexes rearrange to the divalent Sm(OH)(2) and Eu(OH)(2) molecules under red light irradiation.  相似文献   

10.
Reactions of laser-ablated Sc atoms with H2O2 molecules or H2 and O2 mixtures in excess solid argon gives four major new products, which are identified from concentration dependence, isotopic substitution, the effect of electron trap doping, and comparison to frequencies calculated by the B3LYP density functional. These are the Sc(OH)3 trihydroxide, the Sc(OH)2 dihydroxide, the Sc(OH)2+ cation, and the trihydroxide anhydride HOScO molecule. The Sc(OH)2+ cation forms a complex in solid argon that is effectively modeled by calculations for the [(Ar)4Sc(OH)2]+ cation including frequency shifts between the neutral and cation dihydroxides. Finally, the Sc(OH)4- anion is detected in H2O2 experiments.  相似文献   

11.
Wang X  Andrews L 《Inorganic chemistry》2005,44(20):7189-7193
Laser-ablated Hf atoms react with H2O2 and with H2 + O2 mixtures in solid argon to form the Hf(OH)2 and Hf(OH)4 molecules, which are identified from the effect of isotopic substitution on the matrix infrared spectra. Electronic structure calculations at the MP2 level varying all bond lengths and angles converge to nearly linear and tetrahedral molecules, respectively, and predict frequencies for these new product molecules and mixed isotopic substituted molecules of lower symmetry that are in excellent agreement with observed values, which confirms the identification of these hafnium hydroxide molecules. This work provides the first evidence for a metal tetrahydroxide molecule and shows that the metal atom reaction with H2O2 in excess argon can be used to form pure metal tetrahydroxide molecules, which are not stable in the solid state.  相似文献   

12.
The reactions of late lanthanide metal atoms (Gd-Lu) with water molecules have been investigated using matrix isolation infrared spectroscopy. The reaction intermediates and products were identified on the basis of isotopic substitution experiments and density functional theory calculations. All of the metal atoms except Lu react with water to form the M(H2O) complexes spontaneously upon annealing (M = Gd, Tb, Dy, Ho, Er, Tm, and Yb). The Dy(H2O) and Ho(H2O) complexes are able to coordinate a second water molecule to form the Dy(H2O)2 and Ho(H2O)2 complexes. The M(H2O) complexes isomerize to the inserted HMOH isomers under visible light irradiation, which further decompose to give the MO and/or HMO molecules upon UV light irradiation. The M(OH)2 molecules (M = Gd-Lu) were also produced. The results have been compared with our earlier work covering the early lanthanide metal atoms (Nd, Sm, Eu) to observe the existent trends for the lanthanide metal atom reactions.  相似文献   

13.
The isolated group 4 metal oxydifluoride molecules OMF(2) (M = Ti, Zr, Hf) with terminal oxo groups are produced specifically on the spontaneous reactions of metal atoms with OF(2) through annealing in solid argon. The product structures and vibrational spectra are characterized using matrix isolation infrared spectroscopy as well as B3LYP density functional and CCSD(T) frequency calculations. OTiF(2) is predicted to have a planar structure while both OZrF(2) and OHfF(2) possess pyramidal structures, all with singlet ground states. Three infrared absorptions are observed for each product molecule, one M-O and two M-F stretching modes, and assignments of these molecules are further supported by the corresponding (18)O shifts. The molecular orbitals of the group 4 OMF(2) molecules show triple bond character for the terminal oxo groups, which are also supported by an NBO analysis. These molecular orbitals include a σ bond (O(2p) + Ti(sd hybrid)), a normal electron pair π bond (O(2p) + Ti(d)), and a dative π bond arising from O lone pair donation to the overlapping Ti d orbital. The M-O bond dissociation energies for OMF(2) are comparable to those in the diatomic oxide molecules. The OTiF intermediate is also observed through two slightly lower frequency bond stretching modes, and its yield is increased in complementary TiO + F(2) experiments. Finally, the formation of group 4 OMF(2) molecules is highly exothermic due to the weak O-F bonds in OF(2) as well as the strong new MO and M-F bonds formed.  相似文献   

14.
Cd(C(4)H(4)N(2))(H(2)O)(2)MoO(2)F(4) (C(4)H(4)N(2) = pyrazine, pyz) was synthesized via hydro(solvato)thermal methods and characterized by single-crystal X-ray diffraction methods (P3(2)()21, no. 154, Z = 3, a = 7.4328(7) A, c = 16.376(2) A). Both of the known M(pyz)(H(2)O)(2)MoO(2)F(4) (M = Zn, Cd) compounds are comprised of trans-M(pyz)(2)(OH(2))(2)F(2) and cis-MoO(2)F(4) octahedra that share fluoride vertices to form helical chains along the 3-fold screw axes. Individual chains are bridged to six symmetry-equivalent helices through metal-pyrazine and OH(2)...F and OH(2)...O hydrogen bonds. Structural comparisons of similar oxyfluoride chains demonstrate that they can be varied from linear to helical through (1) the replacement of pyridine or pyrazine by H(2)O molecules and (2) the substitution of cis-directing MoO(2)F(4)(2-) anions in place of trans-directing WO(2)F(4)(2-) or TiF(6)(2-) anions. Infrared absorption (IR) measurements for M = Cd show two distinct O-H stretches corresponding to hydrogen-bonded O-H...F and O-H...O groups. Contrastingly for M = Zn, IR measurements exhibit O-H stretches for averaged hydrogen-bonded O-H...(O/F) groups, free (unbound) O-H groups, and higher energy Mo-F stretches. The IR data suggest a small fraction of the O-H...F hydrogen bonds are broken in the M = Zn analogue as a result of the racemic twinning. Both compounds exhibit nonlinear optical behavior, with second harmonic generation (SHG) intensities, relative to SiO(2), of approximately 0.25 ( = 0.28 pm/V) for the racemically twinned Zn(pyz)(H(2)O)(2)MoO(2)F(4) and approximately 1.0 ( = 0.55 pm/V) for the enantiopure Cd(pyz)(H(2)O)(2)MoO(2)F(4).  相似文献   

15.
Thorium atoms react with H2O2, H2 + O2 mixtures, and H2O in excess argon to form the Th(OH)2 and Th(OH)4 molecules as minor and major products, respectively. The vibrational frequencies observed in the matrix infrared spectra are in excellent agreement with MP2 computed values, which confirms the identification of these highly ionic thorium hydroxide molecules. Our MP2 calculations converge to slightly bent and tetrahedral structures, respectively. This investigation reports the first evidence for pure actinide dihydroxide and tetrahydroxide molecules.  相似文献   

16.
Infrared spectra of various OH+ and H2O+ isotopomers solvated in solid argon are presented. The OH+ and H2O+ cations were produced by co-deposition of H2O/Ar mixture with high-frequency discharged Ar at 4 K. Detailed isotopic substitution studies confirm the assignments of absorptions at 3054.9 and 3040.0 cm(-1) to the antisymmetric and symmetric H-O-H stretching vibrations of H2O+ and 2979.6 cm(-1) to the O-H stretching vibration of OH+. The frequencies of H2O+ solvated in solid argon are red-shifted, whereas the frequency of OH+ is blue-shifted with respect to the gas-phase fundamentals. On the basis of previous gas-phase studies and quantum chemical calculations, the OH+ and H2O+ cations solvated in solid argon may be regarded as the OH+-Ar5 and H2O+-Ar4 complexes isolated in the argon matrix.  相似文献   

17.
Five salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C6H2(COO)4H4], have been synthesized and investigated by infrared and Raman spectroscopy and by single crystal X-ray diffraction methods: sodium salt [Na2(H2O)2][C6H2(COO)4H2], potassium salt [K(H2O)3][C6H2(COO)4H3] and transition metal salts [M(H2O)6][C6H2(COO)4H2], which M = Mn, Ni and Zn. Crystal structures of all five compounds show short intramolecular asymmetric hydrogen bonds (SHB) between adjacent carboxyl groups with O...O distance average of 2.40 A. The Raman and infrared spectra reported indicate the presence of short hydrogen bonds in all salts, in agreement with the X-ray data. The O-H stretching mode [nu(OH)] had been observed at about 2500 cm(-1). Deuterated analogues were synthesized and their Raman spectra show that nu(OH)/nu(OD) ratio average is about unit. The symmetric [nu(sym)(O..H..O)] and asymmetric [nu(asym)(O..H..O)] stretching modes have been attributed about 300 and 870 cm(-1), respectively, in all salts, and for deuterated analogues, the ratio nu(OH)/nu(OD) to nu(sym)(O..H..O, O..D..O) is close to unit like it occurs in nu(OH). The vibrational modes, mainly SHB modes, are tentatively assigned by molecular orbital ab initio calculations of pyromellitic acid and anions [C6H2(COO)4H3]- and [C6H2(COO)4H2]2-. Geometry optimizations showed a good agreement with experimental data. Frequency calculation confirms the assignment of specific vibrational modes. Ab initio calculations show that nu(C=O) and nu(sym)(COO) are strongly coupled with in plane OH bending [delta(OH)]. In Raman spectra of deuterated analogues is observed a frequency shift of these bands.  相似文献   

18.
Reaction of FcCH(2)PO(3)H(2) [Fc=(eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))] (H(2)FMPA) and 1,10-phenanthroline (phen) with Cd(OAc)(2).2 H(2)O or ZnSO(4).7 H(2)O in methanol in the presence of triethylamine resulted in the formation of two new ferrocenylphosphonate metal-cage complexes [M(4)(fmpa)(4)(phen)(4)] 7 CH(3)OH (M=Cd 1, M=Zn 2). Both structures contain two kinds of isomeric tetranuclear metal phosphonate cages, which are linked to one another by pi-pi interactions between the phen molecules. In 1, the Cd1, Cd3, and Cd4 atoms are all pentacoordinate, while the Cd2 atom is coordinated by four oxygen atoms from three phosphonate ligands and two nitrogen atoms from the chelating phen in a distorted octahedral geometry. Four Cd atoms from each unit are interconnected through bridging phosphonate ligands with different coordination modes, such as 5.221, 4.211, and 2.11 (Harris notation), yielding a {Cd(4)} cage. In 2, each Zn atom is coordinated by three oxygen atoms from three phosphonate ligands and two nitrogen atoms from phen, leading to a distorted square-pyramidal geometry. The four Zn atoms of each isomeric unit are also interconnected through four bridging phosphonate ligands to yield a {Zn(4)} cage. Fluorescent studies indicate that ligand-to-ligand charge-transfer photoluminescence is observed for 1, while the emission bands of 2 can be assigned to an admixture of ligand-to-ligand and metal-to-ligand charge transfer. Solution-state differential pulse voltammetry indicates that the half-wave potentials of the ferrocenyl moieties in 1 and 2 have different deviations relative to the relevant H(2)FMPA ligand. This may be because the highest occupied molecular orbital (HOMO) in 1 is located in the FMPA(2-) groups, while in 2 the HOMO is located in the phen and Zn(II) groups, so the Fe(II) centers in complex 1 are more easily oxidized to Fe(III) centers than those of 2. The third-order nonlinear optical (NLO) measurements show that both 1 and 2 exhibit strong third-order NLO self-focusing effects; hence, they are promising candidates for NLO materials. By calculating the component of the lowest unoccupied molecular orbitals of 1 and 2, we confirmed that the co-planar phen rings control their optical nonlinearity, while the H(2)FMPA ligands and metal ions have only a weak influence on their NLO properties.  相似文献   

19.
Reactions of laser-ablated Th atoms with H2O during condensation in excess argon have formed a variety of intriguing new Th, H, O species. Infrared absorptions at 1406.0 and 842.6 cm-1 are assigned to the H-Th and Th=O stretching vibrations of HThO. Absorptions at 1397.2, 1352.4, and 822.8 cm-1 are assigned to symmetric H-Th-H, antisymmetric H-Th-H, and Th=O stretching vibrations of the major primary reaction product H2ThO. Thorium monoxide (ThO) produced in the reaction inserts into H2O to form HThO(OH), which absorbs at 1341.0, 804.0, and 542.6 cm-1. Both HThO(OH) and ThO2 add another H2O molecule to give HTh(OH)3 and OTh(OH)2, respectively. Weaker thorium hydride (ThH1(-4)) absorptions were also observed. Relativistic DFT and ab initio calculations were performed on all proposed molecules and other possible isomers. The good agreement between experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts provides support for these first identifications of Th, H, O molecular species.  相似文献   

20.
Near- and mid-infrared spectra of uranyl selenite mineral haynesite (UO(2))(3)(SeO(3))(2)(OH)(2).5H(2)O, were studied and assigned. Observed bands were assigned to the stretching vibrations of uranyl and selenite units, stretching, bending and libration modes of water molecules and hydroxyl ions, and delta U-OH bending vibrations. U-O bond lengths in uranyl and hydrogen bond lengths O-H...O were inferred from the spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号