首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New tetranuclear complexes of copper and cobalt have been prepared under ambient conditions from corresponding metal acetates in acetone, using triethanolamine and diethanolamine as the ligands. The complexes have been characterized by infrared spectroscopy, mass spectroscopy, elemental analysis and thermal analysis. The mass spectra of the complexes show that the complexes retain the acetate moiety in their structures. Simultaneous thermogravimetric and differential thermal analysis (TGA–DTA) reveal that the complexes are solids that sublime over the temperature range 50–100 °C, under atmospheric pressure. The TGA–DTA curves reveal that the complexes retain carbon at temperatures as high as 500 °C. The presence of carbon is known to limit the mobility of growth species for oxides, restricting them to nanometersized crystals. Thus, the complexes have potential applications as precursors in the growth of nanostructured metal oxide thin films under specific CVD conditions. Because of their low sublimability, the complexes are prospective candidates as precursors for low‐temperature growth of multilayer oxide thin films where the thickness of individual layers needs to be controlled at nanometer level and for introducing dopants at low concentrations by MOCVD technique. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
提供了半导体作为光、电和生物等功能材料的表面和界面信息, 同时也为SERS的研究开拓了新的领域.  相似文献   

3.
The aim of this paper was to test the thermal and environmental stability of poly(4-ethynyl-p-xylyleneco-p-xylylene) thin films prepared by chemical vapor deposition(CVD) and to optimize the reaction conditions of the polymer.Fourier transformed infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and fluorescence microscopy were employed to investigate the stability of the reactive polymer coatings in various environmental conditions.Chemical reactivity of the thin films were then tested by Huisgen 1,3-dipolar cycloaddition reaction(‘‘click' reaction).The alkyne functional groups on poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films were found to be stable under ambient storage conditions and thermally stable up to 100 8C when annealed at 0.08 Torr in argon.We also optimized the click reaction conditions of azide-functionalized molecules with poly(4-ethynyl-p-xylylene-co-p-xylylene).The best reaction result was achieved,when copper concentration was 0.5 mmol/L,sodium ascorbate concentration to copper concentration was 5:1.In contrast,the azide concentration and temperature had no obvious effect on the surface reaction.  相似文献   

4.
We present theoretical studies based on first-principles density functional theory calculations on the mechanisms of chemical vapor deposition of Cu-hexafluoracetylacetonato-trimethylvinylsilane (Cu(hfac)(tmvs)) on tantalum surfaces. This process has been used in the past to grow copper films via a disproportionation reaction and was found to exhibit adhesion problems. We show that the Ta surfaces are highly reactive and that the organic ligands in a copper precursor would undergo spontaneous decomposition upon contact with the Ta substrates. This may lead to contamination of the metal surfaces caused by the formation of carbide, fluoride, oxide species, or other fragments of the copper precursor on the barrier layer. We propose a practical solution for these adhesion problems caused by the CVD process by passivating the metal surfaces with N(2) to reduce their activity toward the precursor. Our extensive first-principles molecular dynamics simulations under typical deposition conditions predict that, for properly passivated TaN surfaces, only the copper atoms are firmly adsorbed on the surface, with loose Cu-ligand bonds. The ligands are sufficiently stable on these passivated surfaces, remaining slightly above the surface due to the repulsion between the electron-rich N-layer and the electron-rich ligand groups, and subsequently liberated upon the disproportionation reaction.  相似文献   

5.
Multilayer graphene oxide nanosheets were fabricated using commercially available expanded graphite by simple ultrasonic treatment and then were incorporated into the amorphous carbon matrix as fillers by electrochemical deposition. The electrical conductivity of the films was strongly improved due to the contribution of the multilayer graphene oxide sheets. Moreover, the Young’s modulus, hardness and elastic recovery of the composite films were measured to be about 171.1 GPa, 10.1 GPa and 81.4%, respectively, compared to 137.4 GPa, 5.1 GPa and 44.3% of undoped a-C:H films prepared at the same conditions. Additionally, the friction coefficient was tested to be 0.15 (0.5 N, 2 Hz) and the antiwear life was prolonged to about 200 s while the undoped DLC films obtained at the same condition were easy to be frazzled.  相似文献   

6.
Graphene films on copper foils were synthesized using low-pressure (2200-2800 Pa) chemical vapor deposition (CVD) from methane/hydrogen mixtures. The number of graphene layers is shown to be dependent on the composition of gas mixture and synthesis parameters. The annealing procedure of copper foils used as substrates was optimized to obtain high quality graphene. Atomic and electronic structures of graphene on copper and SiO2/Si substrates were studied by Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure spectroscopy methods.  相似文献   

7.
We have investigated the formation of tungsten oxide nanowires under different chemical vapor deposition (CVD) conditions. We find that exposure of oxidized tungsten films to hydrogen and methane at 900 degrees C leads to the formation of a dense array of typically 10 nm diameter nanowires. Structural and chemical analysis shows that the wires are crystalline WO3. We propose a chemically driven whisker growth mechanism in which interfacial strain associated with the formation of tungsten carbide stimulates nanowire growth. This might be a general concept, applicable also to other nanowire systems.  相似文献   

8.
Graphene films were synthesized with the method of chemical vapor deposition using gaseous methane as the source of carbon and copper foil as the substrate for the deposition. The following conditions were found optimal to grow large-area high quality graphene films: preliminary annealing of the foil in the argon/hydrogen mixture at 970–990 °С for 30–40 min; simultaneous supply of the argon/hydrogen mixture (100 cm3/min) and methane (10 cm3/min) for 5–10 minutes, and subsequent cooling in an inert atmosphere. As a result, 1–10 layered graphene films were obtained to fully coat the copper foil over the area up to 50 cm2. Several methods have been developed to transfer graphene to dielectric substrates such as silicon oxide and flexible polymer films. The obtained graphene films were used to create a flexible transparent conductive touch panel and a highly sensitive resistive humidity sensor exhibiting fast response-recovery time.  相似文献   

9.
Basing on the developed film formation technique by organometallic chemical vapor deposition (organometallic CVD), thin films of electrolytes were prepared on supporting anode and experiments were carried out to optimize the cathodic layer forming conditions. The individual electrochemical cell achieved the specific power of 1190, 800, and 350 mW/cm2 at the temperatures of 800, 700, and 600°C, respectively. Operation of a 13 cm2 fuel cell in solid oxide fuel cell (SOFC) battery was studied.  相似文献   

10.
Homo- and block copolyelectrolytes that have well-defined structures and are responsive to pH were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and employed to produce layer-by-layer (LBL) films. Acrylamido monomers with carboxylate, sulfonate, and amine functionality were utilized to provide both strong and weak homopolyelectrolytes and mixed strong/weak copolyelectrolyte systems. Multilayer films were prepared under specified conditions of pH and ionic strength and analyzed via atomic force microscopy and ellipsometry to study the effects of changes in the local molecular environment on film morphologies. The pH responsiveness and integrity of the multilayer assemblies were investigated by exposing films to solutions of varying pH in a fluid cell and performing in situ AFM analysis. The multilayer dimensions, morphology, and integrity were found to depend on the molecular architecture of the polyelectrolytes, with changes in segmental type and repeating unit distribution producing dramatic differences in film characteristics. These results suggest the possibility of producing LBL assemblies of precisely controlled dimensions and properties by specifically tailoring copolymer structure. To our knowledge, this is the first report of LBL assembly of RAFT-synthesized homo- and copolyelectrolyte multilayer complexes.  相似文献   

11.
Polyelectrolyte multilayer (PEM) films have been recently applied to surface modification of biomaterials. Cellular interactions with PEM films consisted of weak polyelectrolytes are greatly affected by the conditions of polyelectrolyte deposition, such as pH of polyelectrolyte solution. Previous studies indicated that the adhesion of several types of mammalian cells to PAH/PAA multilayer films was hindered by low pH and high layer numbers. The objective of this study is to evaluate whether the hemocompatibility of polysulfone can be modulated by deposition of poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer films. PAH/PAA multilayer films with different layer numbers were assembled onto polysulfone at either pH 2.0 or pH 6.5. The number of platelet adhesion and the morphology of adherent platelets were determined to evaluate hemocompatibility of modified substrates. Compared to non-treat polysulfone, the PEM films developed at pH 2.0 decreased platelet adhesion, while those built at pH 6.5 enhanced platelet deposition. Platelet adhesion was found positively correlated to polyclonal antibodies binding to surface-bound fibrinogen. The extent of platelet spreading was increased with layer numbers of PEM films, suggesting that the adherent platelets on thick PEM films were prone to activation. In conclusion, PAH/PAA films with few layers developed at pH 2.0 possessed better hemocompatibility compared to other substrates.  相似文献   

12.
Applications of inorganic thin films in the electronics industry have spurred activity in the area of chemical vapor deposition (CVD). This article discusses the increasingly sophisticated design strategies for precursor complexes through a series of case studies on CVD of metal oxide and metal nitride films.  相似文献   

13.
Lee SS  Seo KW  Park JP  Kim SK  Shim IW 《Inorganic chemistry》2007,46(3):1013-1017
Copper indium disulfide (CuInS2; CIS) films were deposited on various substrates by two-stage metal-organic chemical vapor deposition (MOCVD) at relatively mild conditions, using Cu- and In/S-containing precursors without toxic H2S gas: first, a pure Cu thin film was prepared on glass or indium/tin oxide glass substrates by using a single-source precursor, bis(ethylbutyrylacetato)copper(II) or bis(ethylisobutyrylacetato)copper(II); second, on the resulting Cu film, tris(N,N-ethylbutyldithiocarbamato)indium(III) was treated to produce CIS films by a MOCVD method at 430 degrees C. In this process, their thicknesses and stoichiometries were found to be elaborately controlled on demand by adjusting the process conditions. The optical band gap of the stoichiometric CIS film was about 1.41 eV, which is in the near-optimal range for harvesting solar radiation energy.  相似文献   

14.
For low-temperature deposition of oxide films relating to Bi-Sr-Ca-Cu-O superconductors, photo-absorption and -decomposition properties were examined with respect to copper and alkaline-earth ß-diketonates. It was confirmed that all ß-diketonates examined were promising as source materials for photochemical vapour deposition (photo-CVD) using a low-pressure mercury lamp, in view of their large light absorption coefficients at wavelength 254 nm. The light irradiation was effective for the formation of highly crystalline oxide films at temperatures below 600 °C. By combining two sources, Ca2CuO3 and SrCuO2 films were prepared. Photo-CVD of c-axis oriented Bi2Sr2CuOx film was achieved by the irradiation of ternary sources of Bi(C6H5)3 and strontium and copper ß-diketonates at 500 °C.  相似文献   

15.
Multilayer polymer films composed of a ruthenium terpyridine complex containing poly(p-phenylenevinylene) (Ru-PPV) and sulfonated polyaniline (SPAN) were prepared by a layer-by-layer electrostatic self-assembly deposition. The deposition process was carried out from SPAN solution in water and Ru-PPV in dimethylformamide (DMF). Optical-quality multilayer thin films were obtained. The film growth process was monitored by quartz crystal microbalance, and the surface morphology of the films was studied by atomic force microscopy. It was found that the properties of the multilayer films were dependent on deposition conditions such as the pH of the SPAN solution, the presence of salt in the polymer solutions, and the post-film-forming thermal annealing process. Cross-section transmission electron microscopic images suggested that there was no stratified structure formed in the multilayer films. Photovoltaic cells were fabricated by sandwiching the multilayer films between indium-tin-oxide and aluminum electrodes. The device performances were examined by illumination with AM 1.5 simulated solar light. The power conversion efficiencies of these devices were on the order of 10(-3)%. The maximum incident photon-to-electron conversion efficiency (IPCE) of the devices was found to be approximately 2% at 510 nm, which is consistent with the absorption maximum of the ruthenium complex. This indicates that the photosensitization process is due to the electronic excitation of the ruthenium complex.  相似文献   

16.
We demonstrate that the surface morphology and surface-wetting behavior of layer-by-layer (LbL) films can be controlled using different deposition methods. Multilayer films based upon hydrogen-bonding interactions between hydrophobically modified poly(ethylene oxide) (HM-PEO) and poly(acrylic acid) (PAA) have been prepared using the dip- and spin-assisted LbL methods. A three-dimensional surface structure in the dip-assisted multilayer films appeared above a critical number of layer pairs owing to the formation of micelles of HM-PEO in its aqueous dipping solution. In the case of spin-assisted HM-PEO/PAA multilayer films, no such surface morphology development was observed, regardless of the layer pair number, owing to the limited rearrangement and aggregation of HM-PEO micelles during spin deposition. The contrasting surface morphologies of the dip- and spin-assisted LbL films have a remarkable effect on the wetting behavior of water droplets. The water contact angle of the dip-assisted HM-PEO/PAA LbL films reaches a maximum at an intermediate layer pair number, coinciding with the critical number of layer pairs for surface morphology development, and then decreases rapidly as the surface structure is evolved and amplified. In contrast, spin-assisted HM-PEO/PAA LbL films yield a nearly constant water contact angle due to the surface chemical composition and roughness that is uniform independent of layer pair number. We also demonstrate that the multilayer samples prepared using both the dip- and spin-assisted LbL methods were easily peeled away from any type of substrate to yield free-standing films; spin-assisted LbL films appeared transparent, while dip-assisted LbL films were translucent.  相似文献   

17.
Nanocrystalline zirconium carbonitride (Zr‐C‐N) and zirconium oxide (ZrO2) films were deposited by chemical vapor deposition (CVD) of zirconium‐tetrakis‐diethylamide (Zr(NEt2)4) and ‐tert‐butyloxide (Zr(OBut)4), respectively. The films were deposited on iron substrates and characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The Zr‐C‐N films show blue, golden brown or bronze colours, with colour stability depending upon the precursor composition (pure metal amide or mixed with Et2NH). The deposition temperature showed no pronounced effect on the granular morphology of the Zr‐C‐N films. The XRD data of the films correspond to the formation of carbonitride phase whereas the XPS analyses revealed a strong surface oxidation and incorporation of oxygen in the film. The films deposited using a mixture of Zr(NEt2)4 and Et2NH showed higher N content, better adhesion and scratch resistance when compared to films obtained from the CVD of pure Zr(NEt2)4. Subject to the precursor composition and deposition temperature (550‐750 °C), the microhardness values of Zr‐C‐N films were found to be in the range 2.11‐5.65 GPa. For ZrO2 films, morphology and phase composition strongly depend on the deposition temperature. The CVD deposits obtained at 350 °C show tetragonal ZrO2 to be the only crystalline phase. Upon increasing the deposition temperature to 450 °C, a mixture of tetragonal and monoclinic modifications was formed with morphology made up of interwoven elongated grains. At higher temperatures (550 and 650 °C), pure monoclinic phase was obtained with facetted grains and developed texture.  相似文献   

18.
A new zirconium complex, bis-(ethylmethylamido)-bis-(N,N'-diisopropyl-2-ethylmethylamidoguanidinato)-zirconium(iv) {[(N(i)Pr)(2)C(NEtMe)](2)Zr(NEtMe)(2)}, was synthesised by partial replacement of amide ligands with bidentate guanidinate ligands. The monomeric Zr complex was characterised by (1)H-NMR, (13)C-NMR, EI-MS, elemental analysis, and single crystal X-ray diffraction studies. The thermal properties of the compound was studied by thermogravimetric and differential thermal analysis (TG/DTA). The new Zr compound is thermally stable and can be sublimed quantitatively which renders it promising for thin film growth using vapor deposition techniques like chemical vapor deposition (CVD) and atomic layer deposition (ALD). The use of this complex for CVD of ZrO(2) on Si(100) substrates was attempted in combination with oxygen as the oxidant. Stoichiometric ZrO(2) films with preferred orientation at lower growth temperatures was obtained and the films were almost carbon free. The preliminary electrical characterisation of ZrO(2) films showed encouraging results for possible applications in dielectric oxide structures.  相似文献   

19.
采用电化学恒电位沉积方法在ITO导电玻璃上和在ZnO薄膜上沉积氧化亚铜(Cu2O),并通过X射线衍射(XRD)和扫描电镜(SEM)对晶体的微观结构和表面形貌进行了分析.在ZnO基底上沉积得到了纳米级的Cu2O粒子并且具有明显择优取向,而在ITO导电玻璃上仅得到粒径为2—5μm的Cu2O粒子,没有明显的择优取向.对薄膜的生长机理进行了讨论.  相似文献   

20.
Twenty eight films of titanium dioxide of varying thickness were synthesised by using atmospheric pressure chemical vapour deposition (CVD) of titanium(IV) chloride and ethyl acetate onto glass and titanium substrates. Fixed reaction conditions at a substrate temperature of 660 °C were used for all depositions, with varying deposition times of 5–60 seconds used to control the thickness of the samples. A sacrificial electron acceptor system composed of alkaline sodium persulfate was used to determine the rate at which these films could photo‐oxidise water in the presence of 365 nm light. The results of this work showed that the optimum thickness for CVD films on titanium substrates for the purposes of water oxidation was 200 nm, and that a platinum coating on the reverse of such samples leads to a five‐fold increase in the observed rate of water oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号