首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Inclusion complexes of spin-labeled pyrrolidine-(1) and piperidine-containing (2) indole derivatives with β-cyclodextrin and γ-cyclodextrin (CD) were prepared in the solid phase and studied by ESR in a wide temperature interval. For all complexes and free spin probes in solvents of different polarity, local environment polarities of the NO group of the guest molecules were determined from the outer extrema separations in the ESR spectra measured at 77 K. From analysis of the Saturation Transfer (ST) ESR spectra and temperature dependences of linear ESR spectra of the complexes it follows that both guest molecules in γ-CD undergo rapid librations. The libration amplitude of the p-orbit axis of the NO group in molecule 2 increases with temperature and reaches about 16° at 333 K. The ESR lineshape of the β-CD complexes depends on the spin probe/β-CD molar ratio (ρ) even at ρ < 0.01. Lineshape analysis of the spectra recorded at different ρ showed that they consist of two components, one of them corresponding to strong spin-spin interaction between guest molecules and the other corresponding to almost absence of this interaction. The spectral components can be attributed to microphases of the complexes and to isolated complexes in the β-CD matrix, respectively. Simulation of the ST ESR and linear ESR spectra of the magnetically diluted complexes showed that the guest motion inside the CD cavity is better described by rotational jumps rather than Brownian diffusion in an orientation potential. In the temperature range 238—333 K, the rotational frequencies of 1 and 2 are in intervals 1.8·107−6·107 s−1 and 4·107−1.3·108 s−1, respectively. The rotation occurs over the whole solid angle. Significant differences in the character of molecular dynamics in the γ-CD and β-CD complexes can be explained by different stoichiometry, namely, 1: 1 for the former and 2: 1 for the latter and by different orientation of guest molecules in the complexes. In both cyclodextrins the rotational mobility of molecules 2 is higher than that of 1 owing to intramolecular conformational transitions in the piperidine ring of 2 and steric hindrances produced by the methyl group in 1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 233—241, February, 2006.  相似文献   

2.
The ternary inclusion complexes of two spin-labeled pyrrolidine-and piperidine-containing indole derivatives (1 and 2, respectively) and two hydrocarbons, benzene and cyclohexane, with γ-and β-cyclodextrins (CD) (altogether eight complexes) were prepared and studied by ESR in the solid phase over a broad temperature range. For most ternary complexes, the hydrophobicity of the NO group environment is much higher than for binary complexes devoid of hydrocarbons. The rotational mobility of both spin-labeled indoles in the ternary complexes of γ-CD is much greater than in binary complexes of γ-CD, which is due to transition to the stoichiometry 2γ-CD-1(2)-C6H6(C6H12) from 1: 1 stoichiometry. The guest rotational mobility in the complexes with either of the CD is higher for 2 than for 1. The saturation transfer ESR spectra show that the rotational mobility of 1 in γ-and β-CD in the presence of C6H6 or C6H12 has a character of fast librations in an angular cone, whose amplitude increases with temperature, whereas for radical 2, the rotation occurs in the full solid angle. The structures and energies of all complexes were calculated for different modes of inclusion of guest molecules using the PM3 method with the standard set of parameters. The calculation results are in qualitative agreement with experimental data. The results demonstrate the possibility of substantial modification of the molecular dynamics and hydrophobicity of the environment of “functional” guest molecules by introducing a second regulatory guest molecule into the CD cavity. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2081–2093, December, 2006.  相似文献   

3.
Interactions between CDs with three substituted phenols, paeonol (Pae), acetovanillone (Ace) and 2-hydroxyl-5-methoxy-acetophone (Hma), which are isomers, have been determined by isothermal titration calorimetry (ITC) and 1H NMR in aqueous solution at 298.2 K. Both the binding thermodynamics and 1H NMR spectra show that the interaction between α-cyclodextrin (α-CD) molecule and each guest molecule is extremely weak. The thermodynamic parameters indicate that the binding processes of β-cyclodextrin (β-CD) with the isomers are mainly entropy driven and that β-CD binds with Pae or Ace in 1:1 stoichiometry, whereas with Hma binds in 1:1 and 2:1 stoichiometries. The thermodynamic parameters also suggest that γ-cyclodextrin (γ-CD) binds each isomer in the same 1:1 stoichiometry. The binding processes of Pae and Hma with γ-CD are enthalpy driven whereas Ace with γ-CD is predominantly driven by entropy. The 1H NMR spectra reveal that the three isomers were trapped into the torus cavity of the β-CD molecule from the narrow side during the binding process. Pae penetrates into the γ-CD cavity from the primary rim of the macrocycle whereas Ace does so from the secondary rim, but Hma appears not interact with the internal cavity of γ-CD at all.  相似文献   

4.
Guest–host interactions were examined for neutral diclofenac (Diclo) and Diclofenac sodium (Diclo sodium) with each of the cyclodextrin (CD) derivatives: α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), all in 0.05 M aqueous phosphate buffer solution adjusted to 0.2 M ionic strength with NaCl at 20 °C, and with β-CD at different pHs and temperatures. The pH solubility profiles were measured to obtain the acid–base ionization constants (pK as) for Diclo in the presence and absence of β-CD. Phase solubility diagrams (PSDs) were also measured and analyzed through rigorous procedures to obtain estimates of the complex formation constants for Diclo/CD and Diclo sodium/CD complexation in aqueous solutions. The results indicate that both Diclo and Diclo sodium form soluble 1:1 complexes with α-, β-, and HP-β-CD. In contrast, Diclo forms soluble 1:1 Diclo/γ-CD complexes, while Diclo sodium forms 1:1 and 2:1 Diclo/γ-CD, but the 1:1 complex saturates at 5.8 mM γ-CD with a solubility product constant (pK sp = 5.5). Therefore, though overall complex stabilities were found to follow the decreasing order: γ-CD > HP-β-CD > β-CD > α-CD, some complex precipitation problems may be faced with aqueous formulations of Diclo sodium with γ-CD, where the overall concentration of the latter exceeds 5.8 mM γ-CD. Both 1H-NMR spectroscopic and molecular mechanical modeling (MM+) studies of Diclo/β-CD indicate the possible formation of soluble isomeric 1:1 complexes in water.  相似文献   

5.
Cyclodextrins (CDs) are useful functional excipients, which are being used to camouflage undesirable pharmaceutical characteristics, especially poor aqueous solubility, through the inclusion complexation process with insoluble drugs. The selection of more efficient cyclodextrin is important to improve the bioavailability of drugs. In this study, the complexing and solubilizing abilities toward poorly water-soluble monocyclic molecules of natural CDs (α-CD, β-CD, and γ-CD) were investigated using Monte Carlo (MC) docking simulations studies. These theoretical results closely agree with the experimental observation of the complex stability in water of the various guests–CD complexes. Host preferences, based on the experimentally determined stability constants between host CDs and guest molecules, show excellent correlation with the calculated interaction energies of corresponding complexes. The inclusion complex with the lower MC docking interaction energy shows a higher value of stability constant than that of the other complex, and the prediction accuracy of the preferred complex for 21 host–guest pairs is 100%. This result indicates that the MC docking interaction energy could be employed as a useful parameter to select more efficient cyclodextrin as a host for the bioavailability of insoluble drugs. In this study, β-CD shows greater solubilizing efficacies toward guest molecules than those of α-CD and γ-CD, with the exception of one case due to the structure of a guest molecule containing one lipophilic cyclic moiety. The surface area change of CDs and hydrogen bonding between the host and guest also work as major factors for the formation of the stable complex.  相似文献   

6.
Several host–guest inclusion compounds of eugenol as a guest molecule and cyclodextrins (α-,β-,γ-CD) and heptakis (2,6-di-O-methyl)-β-cyclodextrin (DMβ-CD) as hosts were investigated in the solid state and in aqueous solution. The one-to-one solid inclusion compounds of eugenol and β-CD or γ-CD were prepared, but those of eugenol with α- or DMβ-CD were not obtained under the same condition. However, the UV-visible absorption spectroscopy data indicated that the liquid guest could form a 1:1 inclusion compound with all four hosts respectively in aqueous solution. The two solid inclusion compounds were characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). The association constants (K), calculated from the modified Benesi–Hidebrand equation, of eugenol with α-, β-, γ- and DMβ-CD is 4.95 × 104, 3.96 × 105, 1.47 × 105 and 9.33 × 104 mol−1 dm3, respectively.  相似文献   

7.
The inclusion complexes of β-CD and parecoxib [PRB] in aqueous solution were investigated using 1H NMR spectroscopic study revealed the existence of four different equilibria for 1:1 inclusion complexes in which both the aromatic rings of the guest are tightly held by the host cavity. The NMR spectra of the PRB studied in the presence of β-CD are fully assigned and interpreted by means of COSY spectrum for the unambiguous assignment of guest aromatic ring protons. The parallel interpretation of β-CD chemical shift changes and dipolar contacts, with the aid of 2D ROESY, allows the mode of binding to be established for four possible structures of 1:1 PRB-β-CD inclusion complexes.  相似文献   

8.
Understanding the mechanisms of mutual recognition and complementary binding of molecules in guest-host complexes is based on analysis of their spatial structure. As guest-host complexes, we have synthesized inclusion compounds of 1,4-benzodiazepine anxiolytic agents gidazepam and cinazepam with β-cyclodextrin, in which these anxiolytic agents manifest increased biological accessibility. The spatial structure of the complexes was determined from the two-dimensional NOESY spectra and analysis of the fragmentary mobility of the guest and host molecules, characterized by spin-lattice relaxation times T1 of the13C nuclei. An analysis of d-contacts showed that the 5-phenyl ring is completely enclosed in the inner hydrophobic cavity of β-CD [(C2′ H-C4′ H)-CIIH(CIVH), CVH (CIIIH, CVIH2), CVIOH]. For the 1:1 complex, intense d-contracts of C8H with CVIOH indicate that C8H is located in the vicinity of both wide and narrow bases of the bracelet. This is only possible for the 2:2 complex, in which both β-CD molecules approach each other by their wide and narrow bases. A comparison between the schemes of d-contacts for the 2:2 and 2:1 associates proves that the β-CD molecules have the same spatial orientation in the dimer. The difference is in the fact that the hydrazinocarbonyl fragment of gidazepam and the hemisuccinate fragment of cinazepam penetrate into an empty molecule of the 2:1 β-CD complex (NH2-CIH contact). The intensities of the cross peaks were measured, due to which the interatomic distances between the guest and host molecules were calculated and the spatial structure of the clathrates was established. The benzodiazepine derivatives are embedded differently into the clathrate molecule, as shown by the value of the angle between the symmetry axis of β-CD and the axis through the centers of the aromatic rings: 0° for gidazepam and 60° for cinazepam. This is a consequence of the fact that the substituents forming hydrogen bonds with hydroxyl groups at the wide base of the β-CD bracelet lie in different positions: the hydrazinocarbonylmethyl fragment of gidazepam lies at N1, and the hemisuccinate fragment of cinazepam is at C3. A. V. Bogatskii Physicochemical Institute, Ukrainian National Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 5, pp. 876–890, September–October, 1996. Translated by L. Smolina  相似文献   

9.
The inclusion of vanadocene dichloride (VDC) and 1,1′-dimethyl vanadocene dichloride (MeVDC) into cyclodextrines (α-CD, β-CD and γ-CD) was studied by EPR spectroscopy. It was found that VDC and MeVDC with β-CD and γ-CD form true inclusion compounds, but with α-CD, VDC and MeVDC gave only fine dispersion mixtures. The inclusion was validated by anisotropic EPR spectra of solid samples. In addition, the antimicrobial was validated by anisotropic EPR spectra of solid samples. In addition, the antimicrobial behavior (against E. coli) of each of the complexes was determined. It was established that not only did VDC and MeVDC cause elongation of E. coli, but also the new vanadocene inclusion complexes were effective in this regard.  相似文献   

10.
Hydrated inclusion complexes of the hosts β-CD (CD=cyclodextrin), γ-CD and permethylated β-CD with the guest clofibric acid were analysed by TG and DSC methods to characterise their dehydration behaviours. Activation energies for dehydration of the β- and γ-CD clofibric acid complexes, determined by isothermal thermogravimetry, are significantly lower (∼20-25%) than those for the corresponding uncomplexed hydrated CDs. These data can be reconciled with X-ray structural data which show that H2O molecules in the complexes occupy different crystal sites from those occupied in the parent CDs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The effect of native and randomly methylated β-CDs on the absorption and steady-state fluorescence spectra of 2-(4-dimethylaminostyryl)-3-(2-hydroxyethyl)-benzothiazolium chloride (DHB) in aqueous buffer solutions with various pH values was studied. The inclusion with both CDs at pH 7.2 barely changed the UV spectra, whereas significant variations were produced in the emission spectra in all buffer solutions. In all cases the CDs increase guest fluorescence. The 1:1 stoichiometry of the inclusion complexes of the dye with both CDs was established according to the modified Benesi-Hildebrand method. Binding constant values were calculated using the iterative nonlinear least-squares regression approach. The pH of the solution and the type of the CD affected complex stability. The results indicate that native β-CD possesses better complexing ability towards DHB than randomly substituted β-CD and that the most stable inclusion complexes are formed in basic medium because of the structural changes in the guest molecule. In basic medium an attempt is made to interpret the proposed mechanism in terms of molecular rearrangement which take place as the dye penetrates the CD cavity.  相似文献   

12.
The complexation behavior of 6-amino-6-deoxy-γ-cyclodextrin (CD), 6A,6X-diamino-6A,6X-deoxy-γ-CDs and 3A-amino-3A-deoxy-altro-γ-CD with 2-anthracenecarboxylic acid (AC) was studied by NMR, UV–vis and circular dichroism spectroscopy. These modified γ-CD derivatives were found to form stable 1:2 host-guest ternary complexes with AC in aqueous solution. Compared with native γ-CD, the primary-face-aminated γ-CDs exhibited remarkably enhanced overall association constants as a result of the additional electrostatic interactions between the oppositely charged host and guest. In contrast, the ternary complex formation of the secondary-face-aminated γ-CD with AC was hindered.  相似文献   

13.
The reorientation of 1-adamantanecarboxylic acid (AdCA) within the β-cyclodextrin (β-CD) cavity is investigated by means of multiple-field 13C NMR relaxation. The dissociation constant describing the complexation equilibrium is determined using translational diffusion measurements for the guest during a titration by the host in D2O/DMSO solvent mixture. The changes in apparent diffusion properties of AdCA during the titration are at 25 °C well described assuming the formation of a 1:1 complex, whereas at 0 °C the data indicate the presence of a 2:1 (guest:host) complex. The 13C NMR relaxation parameters for the AdCA molecule bound inside the β-CD cavity are extracted. Despite the high association constant, indicating a strong interaction between the two molecules, the guest molecule is quite mobile. The reorientation of the bound AdCA at 25 °C can be described by either the Lipari–Szabo or the axially symmetric rotational diffusion model. The motion is extremely anisotropic: the adamantyl group rotates fast around the β-CD symmetry axis, inside its cylindrical cavity. At lower temperature, the relaxation properties are no longer possible to explain using these models. Instead, the data are analyzed using extended, three-step spectral density of Clore et al. [J. Am. Chem. Soc. 112, 4989 (1990)].  相似文献   

14.
Thermodynamic parameters for formation of the inclusion complexes of α-, β- and γ-cyclodextrin (α-, β- and γ-CD) with ibuprofen (BF) in Tris-HCl buffer solutions (pH=7.0) have been determined by isothermal titration calorimetry (ITC) with nanowatt sensitivity, and the inclusion structures have been investigated by using 1H-NMR spectra at 298.15 K. A theoretical study on the inclusion processes between BF and CDs has been performed with the B3LYP/6-31G*//PM3 method in order to investigate the formation mechanism of the inclusion complexes. An analysis of the thermodynamic data indicates that the stoichiometries of α-, β- and γ-CD with BF are all 1:1 and formation of the inclusion complexes α-CD⋅BF and β-CD⋅BF are driven by enthalpy and entropy, whereas formation of γ-CD⋅BF is an entropy driven process. The 1H-NMR spectra provide clear evidence for the inclusion phenomenon, and show that the isobutyl group and aromatic ring of the guest molecule are trapped inside the cavity of the CDs. Theoretical calculations suggest that the complex formed by the BF molecule entering into the cavity of the CD molecule from the wide side is more stable than that from the narrow side.  相似文献   

15.
Citronellol and citronellyl acetate have been entrapped with α-, β- and γ-cyclodextrin (CD). Evolved gas detection and TG-MS coupling was applied to prove the actual inclusion complex formation between monoterpens and CDs. The terpene content was determined by UV-VIS specrophotometry and RP-HPLC and the effect of storage time on the terpene content was also investigated. The α- and γ-cyclodextrin inclusion complexes showed higher thermal stabilities vs. dynamic heating compared to the β-CD complexes. On the contray, the retention of guest using β-cyclodextrin even after 10 years of storage was much more pronounced. Experimental data other than 1:1 complex compositions are assumed. Molecular modeling experiments also suggested multiple complex compositions.  相似文献   

16.
In pH 7.3 buffers, the interactions of a cationic porphyrin, tetrakis(4-N-methylpyridyl)porphyrin (TMPyP), with cyclodextrins (CDs) and disodium phthalate (DSP) have been examined by means of absorption, fluorescence, and induced circular dichroism spectroscopy. α-CD, β-CD, and γ-CD form a 1:1 inclusion complex with a TMPyP monomer, which dimerizes in solution without CD. TMPyP also forms a 1:1 organic cation–organic anion complex with DSP. The 1:1 TMPyP–DSP complex forms a ternary CD–TMPyP–DSP inclusion complex with α-, β-, and γ-CD, in which a DSP molecule is not incorporated into the CD cavity. From the fluorescence intensity change, the␣equilibrium constants have been evaluated for the formation of the inclusion complexes and the organic cation–anion complexes.  相似文献   

17.
The inclusion interaction between quercetin and β-cyclodextrin (β-CD) binding site has been investigated, based on PM3 and ONIOM2 methods. The obtained results clearly indicate that the orientation in which the B ring of the guest molecule located near the secondary hydroxyls of the β-CD cavity is preferred in the binding energy. Moreover, Analyses regarding the complex structures suggest that one hydrogen bond between 7-hydroxy group (OH) of quercetin and 6-OH of β-CD is formed. This hydrogen bond interaction plays an important role in the bound quercetin/β-CD complex.  相似文献   

18.
The inclusion complexes between fusidate, 3-keto fusidate, 11-keto fusidate and 11-deoxy fusidate and α-, β-, and γ-cyclodextrin (CD) were studied using capillary electrophoresis. By monitoring the changes in mobility of the negatively charged compounds in the presence of varying amount of CD the stability constants of the complexes formed could be obtained. In the case of α- and β-CD the obtained results could be modelled to a simple model assuming 1:1 stoichiometry, revealing, not surprisingly, that β-CD formed a stronger complex compared to α-CD. A model assuming 1:2 (fusidate:CD) stoichiometry could be fitted to the data obtained with γ-CD. The results showed that the different fusidanes formed very strong 1:1 complexes with γ-CD as well as a quite weak 1:2 complex. 3-keto-, 11-keto- and 11-deoxy-fusidate formed stronger complexes compared to fusidate, probably due to an decrease in hydrophilicity caused by the reduced number of hydroxyl groups. The complex between γ-CD and fusidate was studied by use of 2D-NMR spectroscopy. The results showed that most of the hydrogen atoms of fusidate show interactions with the hydrogen atoms in the cavity of γ-CD. The interaction pattern suggests that fusidate may be fully embedded in the cavity of γ-CD. No interactions between fusidate and the hydrogen atoms situated at the outside of the CD were found.  相似文献   

19.
The inclusion complexes of selected imidazoline-derived drugs, namely Antazoline (AN), Naphazoline (NP) and Xylometazoline (XM) with β-cyclodextrin (β-CD) were investigated using steady-state fluorescence spectroscopy, differential scanning calorimetry (DSC), and molecular mechanics (MM) calculations and modeling. The modified form of the Benesi-Hildebrand relation was employed for estimating the formation constant (Kf) of the 1:1 inclusion complexes, which was applied based on measuring the variation in the fluorescence intensity of the guest molecule as a function of growing β-CD concentration. On the other hand, the formation of the inclusion complexes was verified by analyzing solid samples of the complexes using DSC. The thermodynamics of the inclusion complexation, standard enthalpy (ΔH°) and entropy changes −(ΔS°) were obtained from the temperature-dependence of Kf. Obtained values of ΔH° and ΔS° indicated that the inclusion process favorably proceeds through enthalpy changes that was sufficiently predominant to compensate for the unfavorable entropy changes. MM calculations revealed that the proposed drugs molecules can form 1:1 inclusion complexes with β-CD that are stabilized predominantly through van der Waals forces. In addition, MM calculation provided the energetically favored configuration of the inclusion complexes, where NP and XM can be included inside the β-CD cavity through its wide rim, whereas AN can penetrate through the narrow rim of the β-CD cavity.  相似文献   

20.
Solubilities of tricyclic acyclovir derivatives in buffered aqueous solutions of hydroxypropyl-β-cyclodextrin (HP-β-CD) at pH 5.5 and 7.0 were determined at 25 and 37 °C. Complexation of these compounds with HP-β-CD resulted in a noticeable increase of their solubility; nevertheless it was limited to tricyclic derivatives of acyclovir carrying an aryl substituent. Combination of 1H NMR and DSC techniques demonstrated the existence of inclusion complexes between acyclovir derivatives and HP-β-CD. The stability constants, estimated using the Higuchi–Connors method, were found in the range of 10–100 M−1. Additionally, the pK a values at 25 °C and molar extinction coefficients in aqueous buffered solutions were also determined for all studied compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号