首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a new docking method to consider receptor flexibility, a hybrid method of molecular dynamics and harmonic dynamics. The global motions of the whole receptor were approximately introduced into those of the receptor in the docking simulation as harmonic dynamics. On the other hand, the local flexibility of the side chains was also considered by conventional molecular dynamics. We confirmed that this new method can reproduce the fluctuations of the whole receptor by making a comparison of the directions and amplitudes of the global fluctuations. Then this method was applied to the docking of HIV-1 protease and its ligand. As a result, we observed a docking process where the ligand enters into the binding pocket well, which implies that this method is effective enough to reproduce a molecular complex formation.  相似文献   

2.
Rational design of affinity peptide ligands of proteins by flexible docking simulation is performed using the SYBYL program package. This approach involves the use of experimental data to verify a scoring function that can be used to assess the affinity of a peptide for its target protein. The enzyme-linked immunosorbent assay (ELISA) data of several peptides displayed on phage surfaces for insulin and lysozyme, respectively, reported in literature are used for the purpose. It is found that the absolute values of the Dscore calculated from the docking correspond well to the ELISA data that relate to the affinity between the peptides and the target molecule. So, the Dscore function is used to assess the affinity of docked peptides in a pentapeptide library designed on the basis of protein (alpha-amylase) structure. As a result, a pentapeptide with a high Dscore value is selected and a hexapeptide (FHENWS) is built by linking serine to its C-terminal to lengthen the peptide. Molecular surface analysis with the MOLCAD program reveals that electrostatic interactions (including hydrogen bonds) and Van der Waals forces contribute to the affinity of the hexapeptide for alpha-amylase. Chromatographic experiments with the immobilized peptide have given further evidence for this observation. Adsorption isotherm described by the Langmuir equation indicates that the apparent binding constant of alpha-amylase to the immobilized hexapeptide was 2.5x10(5)L/mol. Finally, high affinity and specificity of the affinity adsorbent is exemplified by the purification of alpha-amylase from crude fermentation broth of Bacillus subtilis.  相似文献   

3.
The docking of flexible small molecule ligands to large flexible protein targets is addressed in this article using a two-stage simulation-based method. The methodology presented is a hybrid approach where the first component is a dock of the ligand to the protein binding site, based on deriving sets of simultaneously satisfied intermolecular hydrogen bonds using graph theory and a recursive distance geometry algorithm. The output structures are reduced in number by cluster analysis based on distance similarities. These structures are submitted to a modified Monte Carlo algorithm using the AMBER-AA molecular mechanics force field with the Generalized Born/Surface Area (GB/SA) continuum model. This solvent model is not only less expensive than an explicit representation, but also yields increased sampling. Sampling is also increased using a rotamer library to direct some of the protein side-chain movements along with large dihedral moves. Finally, a softening function for the nonbonded force field terms is used, enabling the potential energy function to be slowly turned on throughout the course of the simulation. The docking procedure is optimized, and the results are presented for a single complex of the arabinose binding protein. It was found that for a rigid receptor model, the X-ray binding geometry was reproduced and uniquely identified based on the associated potential energy. However, when side-chain flexibility was included, although the X-ray structure was identified, it was one of three possible binding geometries that were energetically indistinguishable. These results suggest that on relaxing the constraint on receptor flexibility, the docking energy hypersurface changes from being funnel-like to rugged. A further 14 complexes were then examined using the optimized protocol. For each complex the docking methodology was tested for a fully flexible ligand, both with and without protein side-chain flexibility. For the rigid protein docking, 13 out of the 15 test cases were able to find the experimental binding mode; this number was reduced to 11 for the flexible protein docking. However, of these 11, in the majority of cases the experimental binding mode was not uniquely identified, but was present in a cluster of low energy structures that were energetically indistinguishable. These results not only support the presence of a rugged docking energy hypersurface, but also suggest that it may be necessary to consider the possibility of more than one binding conformation during ligand optimization.  相似文献   

4.
5.
Computational methods are needed to help characterize the structure and function of protein–protein complexes. To develop and improve such methods, standard test problems are essential. One important test is to identify experimental structures from among large sets of decoys. Here, a flexible docking procedure was used to produce such a large ensemble of decoy complexes. In addition to their use for structure prediction, they can serve as a proxy for the nonspecific, protein–protein complexes that occur transiently in the cell, which are hard to characterize experimentally, yet biochemically important. For 202 homodimers and 41 heterodimers with known X‐ray structures, we produced an average of 1217 decoys each. The structures were characterized in detail. The decoys have rather large protein–protein interfaces, with at least 45 residue–residue contacts for every 100 contacts found in the experimental complex. They have limited intramonomer deformation and limited intermonomer steric conflicts. The decoys thoroughly sample each monomer's surface, with all the surface amino acids being part of at least one decoy interface. The decoys with the lowest intramonomer deformation were analyzed separately, as proxies for nonspecific protein–protein complexes. Their interfaces are less hydrophobic than the experimental ones, with an amino acid composition similar to the overall surface composition. They have a poorer shape complementarity and a weaker association energy, but are no more fragmented than the experimental interfaces, with 2.1 distinct patches of interacting residues on average, compared to 2.6 for the experimental interfaces. The decoys should be useful for testing and parameterizing docking methods and scoring functions; they are freely available as PDB files at http://biology.polytechnique.fr/decoys . © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
The present article introduces a general variational scheme to find approximate solutions of the spectral problem for the molecular vibration Hamiltonian. It is called the "vibrational mean field configuration interaction" (VMFCI) method, and consists in performing vibrational configuration interactions (VCI) for selected modes in the mean field of the others. The same partition of modes can be iterated until self-consistency, generalizing the vibrational self-consistent field (VSCF) method. As in contracted-mode methods, a hierarchy of partitions can be built to ultimately contract all the modes together. So, the VMFCI method extends the traditional variational approaches and can be included in existing vibrational codes based on the latter approaches. The flexibility and efficiency of this new method are demonstrated on several molecules of atmospheric interest.  相似文献   

7.
Protein binding sites undergo ligand specific conformational changes upon ligand binding. However, most docking protocols rely on a fixed conformation of the receptor, or on the prior knowledge of multiple conformations representing the variation of the pocket, or on a known bounding box for the ligand. Here we described a general induced fit docking protocol that requires only one initial pocket conformation and identifies most of the correct ligand positions as the lowest score. We expanded a previously used diverse "cross-docking" benchmark to thirty ligand-protein pairs extracted from different crystal structures. The algorithm systematically scans pairs of neighbouring side chains, replaces them by alanines, and docks the ligand to each 'gapped' version of the pocket. All docked positions are scored, refined with original side chains and flexible backbone and re-scored. In the optimal version of the protocol pairs of residues were replaced by alanines and only one best scoring conformation was selected from each 'gapped' pocket for refinement. The optimal SCARE (SCan Alanines and REfine) protocol identifies a near native conformation (under 2 angstroms RMSD) as the lowest rank for 80% of pairs if the docking bounding box is defined by the predicted pocket envelope, and for as many as 90% of the pairs if the bounding box is derived from the known answer with approximately 5 angstroms margin as used in most previous publications. The presented fully automated algorithm takes about 2 h per pose of a single processor time, requires only one pocket structure and no prior knowledge about the binding site location. Furthermore, the results for conformationally conserved pockets do not deteriorate due to substantial increase of the pocket variability.  相似文献   

8.
A very efficient algorithm for determining the geometrically feasible binding modes of a flexible ligand molecule at the receptor site is presented. It is based on distance geometry but maintains the requirements of three dimensions. The distance geometry manipulation can superimpose two bodies without explicitly calculating the necessary rigid rotation and translation. The whole conformation space of a flexible molecule can be efficiently examined by considering only a finite number of conformational points. The method is suitable only when the criterion for superposition is some minimum distance limit. It cannot, however, give the exact distance between two points in two different bodies.  相似文献   

9.
Many molecular docking programs are available nowadays, and thus it is of great practical value to evaluate and compare their performance. We have conducted an extensive evaluation of four popular commercial molecular docking programs, including Glide, GOLD, LigandFit, and Surflex. Our test set consists of 195 protein‐ligand complexes with high‐resolution crystal structures (resolution ≤2.5 Å) and reliable binding data [dissociation constant (Kd) or inhibition constant (Ki)], which are selected from the PDBbind database with an emphasis on diversity. The top‐ranked solutions produced by these programs are compared to the native ligand binding poses observed in crystal structures. Glide and GOLD demonstrate better accuracy than the other two on the entire test set. Their results are also less sensitive to the starting structures for docking. Comparison of the results produced by these programs at three different computation levels reveal that their accuracy are not always proportional to CPU cost as one may expect. The binding scores of the top‐ranked solutions produced by these programs are in low to moderate correlations with experimentally measured binding data. Further analyses on the outcomes of these programs on three suites of subsets of protein‐ligand complexes indicate that these programs are less capable to handle really flexible ligands and relatively flat binding sites, and they have different preferences to hydrophilic/hydrophobic binding sites. Our evaluation can help other researchers to make reasonable choices among available molecular docking programs. It is also valuable for program developers to improve their methods further. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.  相似文献   

11.
An improved version of the fragment-based flexible ligand docking approach SEED-FFLD is tested on inhibitors of human immunodeficiency virus type 1 protease, human alpha-thrombin and the estrogen receptor beta. The docking results indicate that it is possible to correctly reproduce the binding mode of inhibitors with more than ten rotatable bonds if the strain in their covalent geometry upon binding is not large. A high degree of convergence towards a unique binding mode in multiple runs of the genetic algorithm is proposed as a necessary condition for successful docking.  相似文献   

12.
Proteins can sample a broad landscape as they undergo conformational transition between different functional states. At the same time, as key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of a protein is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables are first used to describe the transition cycle of the transporter. An extended set of conformations (extended ensemble) representing the full transition cycle between the inward- and the outward-facing states is then used to seed high-throughput docking calculations of known substrates, non-substrates, and modulators of the transporter. Large differences are predicted in the binding affinities to different conformations, with compounds showing stronger binding affinities to intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the binding modes shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present within the individual TMD leaflets. Based on the results, the central cavity is further divided into two major subsites, first preferably binding smaller substrates and high-affinity inhibitors, whereas the second one shows preference for larger substrates and low-affinity modulators. These central subsites along with the low-affinity interaction sites present within the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further an optimization strategy for developing more potent inhibitors of Pgp, based on increasing its specificity to the extended ensemble of the protein, instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier in silico studies using single static structures of Pgp, our results show better agreement with experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.

Functional states of P-glycoprotein formed during its full transition cycle (red to blue), captured by molecular dynamics simulations, form a structural framework for extended-ensemble docking of small-molecule ligands of diverse activities.  相似文献   

13.
We have developed a novel iterative approach for calculation of partial charges in proteins within the framework of the 'molecular capacitance' model. The method operates by an effective 'inductive' electronegativity scale derived from a number of the conventional charge systems including CHARMM, AMBER, MMFF, OPLS, and PEOE among others. Our novel 'inductive' electronegativity equalization procedure allows rapid and conformation sensitive computation of adequate partial charges in proteins. Accuracy of the 'inductive' values was confirmed by their correlation with DFT-computed partial charges in common amino acids. A comparative docking study with an extended steroid data set not only illustrated the adequacy of 'inductive' protein charges but also demonstrated their superior performance compared to several conventional protein charging systems. Subsequent docking with 'inductive' charges resulted in identification of five potential leads as human Sex Hormone Binding Globulin (SHBG) ligands from a commercial library of natural compounds. When the selected substances were evaluated for their ability to bind SHBG in vitro, three of them displaced testosterone from the SHBG steroid-binding site, and with one compound this was achieved at micromolar concentrations.  相似文献   

14.
Virtual screening by molecular docking has become a widely used approach to lead discovery in the pharmaceutical industry when a high-resolution structure of the biological target of interest is available. The performance of three widely used docking programs (Glide, GOLD, and DOCK) for virtual database screening is studied when they are applied to the same protein target and ligand set. Comparisons of the docking programs and scoring functions using a large and diverse data set of pharmaceutically interesting targets and active compounds are carried out. We focus on the problem of docking and scoring flexible compounds which are sterically capable of docking into a rigid conformation of the receptor. The Glide XP methodology is shown to consistently yield enrichments superior to the two alternative methods, while GOLD outperforms DOCK on average. The study also shows that docking into multiple receptor structures can decrease the docking error in screening a diverse set of active compounds.  相似文献   

15.
The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13–15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.  相似文献   

16.
A series of enantiomerically pure benzopyrano[3,4-b][1,4]oxazines have been synthesised and tested for their ability to inhibit P-glycoprotein. Reducing the conformational flexibility of the molecules leads to remarkable differences in the activity of diastereoisomers. Docking studies into a homology model of human P-gp provide first insights into potential binding areas for these compounds.  相似文献   

17.
18.
Yang C  Nakamura A  Wada T  Inoue Y 《Organic letters》2006,8(14):3005-3008
[reaction: see text] A series of modified gamma-cyclodextrins (CDs) with a flexible or rigid cap, synthesized and used as chiral supramolecular hosts for mediating the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid, significantly improved the chemical and optical yields of chiral head-to-head cyclodimer 3, while the gamma-CD with a rigid cap dramatically inverted the stereochemical outcomes and further improved the enantioselectivities of both head-to-tail and head-to-head dimers 2 and 3.  相似文献   

19.
A matrix method to describe the equilibrium binding of a ligand by a multidentate oligomer with a system of binding centers differing in the affinity for the binding ligand has been proposed. The example of a complexation process simulating the formation of a complex between an oligonucleotide and zinc phthalocyanine ZnPc is considered. With the use of the proposed method, diagrams of the relative contents of different forms of DNA-ligand complexes have been constructed and analyzed. It is shown that the cooperativity of complexation has a considerable effect on the equilibrium of the ligand with the system of nonequivalent centers of binding. The experimental data on changes in the intensity of luminescence in the course of binding between zinc tetrakis(diisopropylguanidinio)phthalocyanine and a DNA molecule with the nucleotide sequence GTTA(GAGTTA)4GG have been analyzed.  相似文献   

20.
Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein–ligand complementarities. Interestingly, while protein–ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state‐of‐the‐art protein‐ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号