首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report fabrication of thin (100~300 nm) poly(phenylene oxide) (PPO) films and their composites with poly (styrene) (PS) and silver (Ag) nanoparticles using a one‐step electron beam‐assisted vapor phase co‐deposition technique. Surface morphology and the structure of the deposited polymer thin film composites were characterized by FTIR, Raman, X‐ray spectroscopy, and contact angle measurements. As‐deposited PPO films and PPO/Ag composites were of porous nature and contrary to solvent casting techniques were free from nodular growth. In the case of PPO/PS thin film polymer composites, however, film morphology displayed nodular growth of PPO with nodule diameters of about ~200 nm and height of approximately 50 nm. Unique morphological changes on the porous PPO thin film surface were noticed at different Ag filling ratios. Further, the capacitance of PPO/Ag composites (<16 wt%) were measured under radio‐frequency conditions and they were functional up to 100 MHz with an average capacitance density of about 2 nF/cm2. The fabricated PPO‐based composite systems are discussed for their potential applications including embedded capacitor technology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The single crystal of a silver complex bis (imidazole) silver(I) nitrate (Ag(C3H4N2)2(NO3), BISN) has been obtained and characterized by X‐ray single‐crystal diffraction. Its crystal thin film was prepared using direct growth on quartz substrates. The surface morphology of the thin film was studied by atomic force microscopy (AFM). The nonlinear optical (NLO) properties of the thin film were investigated by using closed‐aperture Z‐scan technique with 20 picosecond (ps) pulses at wavelength 532 nm. Using time‐dependent density‐functional theory (TDDFT) with the basis set LanL2DZ, its linear and NLO properties were calculated.  相似文献   

3.
Liquid metal salts are electrolytes with the highest possible metal concentration for electrodeposition, because the metal ion is an integral part of the solvent. This paper introduces the new ionic silver complexes [Ag(MeCN)(4)](2)[Ag(Tf(2)N)(3)], [Ag(MeCN)][Tf(2)N] and [Ag(EtIm)(2)][Tf(2)N], where MeCN stands for acetonitrile, EtIm for 1-ethylimidazole and Tf(2)N is bis(trifluoromethylsulfonyl)imide. These complexes have been characterized by differential scanning calorimetry, single crystal X-ray crystallography, thermogravimetrical analysis, Raman spectroscopy and cyclic voltammetry. [Ag(MeCN)(4)](2)[Ag(Tf(2)N)(3)] is a room temperature ionic liquid. Smooth silver layers of good quality could be deposited from it, at current densities of up to 25 A dm(-2) in unstirred solutions. [Ag(EtIm)(2)][Tf(2)N] melts at 65 °C and can be used as an electrolyte for silver deposition above this temperature. [Ag(MeCN)][Tf(2)N] has a melting point that is too high to be useful in electrodeposition. Addition of thiourea or 1H-benzotriazole to the electrolyte decreased the surface roughness of the silver coatings. The morphology of the metal layers was investigated by atomic force microscopy (AFM). Adsorption of 1H-benzotriazole on the silver metal surface has been proven by Raman spectroscopy. This work shows the usefulness of additives in improving the quality of metal films electrodeposited from ionic liquids.  相似文献   

4.
A new series of different nuclearity silver(I) complexes with a variety of tetracyano pendant-armed hexaazamacrocyclic ligands containing pyridine rings (Ln) has been prepared starting from the nitrate and perchlorate Ag(I) salts in acetonitrile solutions. The ligands and complexes were characterized by microanalysis, conductivity measurements, IR, Raman, electronic absorption and emission spectroscopy, and L-SIMS spectrometry. (1)H NMR titrations were employed to investigate silver complexation by ligands L3 and L.(4) The compounds [Ag2L2(NO3)2] (2), ([Ag2L2](ClO4)2.2CH3CN)(infinity) (4), [AgL3](ClO(4)).CH3CN (5), and [Ag4(L4)2(NO3)2](NO3)2.4CH3CN.2H2O (7) were also characterized by single-crystal X-ray diffraction. The complexes have different nuclearities. Complex 2 is dinuclear with an {AgN3O2} core and a significant intermetallic interaction, whereas complex 4 has a polymeric structure formed by dinuclear distorted {AgN4} units joined by nitrile pendant arms. Compound 5 is mononuclear with a distorted {AgN2} linear geometry, and complex 7 consists of discrete units of a tetranuclear array of silver atoms with {AgN3O} and {AgN4} cores in distorted square planar environments. Complexes 2 and 4 were found to be fluorescent in the solid state at room temperature because of the Ag-Ag interactions.  相似文献   

5.
A novel neutral tetrameric silver(I) cluster [Ag(mtsc)](4) was obtained from reactions of a tridentate (4)N-morpholyl 2-acetylpyridine thiosemicarbazone ligand (N'-[1-(2-pyridyl)ethylidene] morpholine-4-carbothiohydrazide, Hmtsc) and silver(I) sources containing Ag-O bonds (Ag(2)O, Ag(OAc), silver(I) 2-pyrrolidone-5-carboxylate (infinity){[Ag(Hpyrrld)](2)}, silver(I) 5-oxo-2-tetrahydrofurancarboxylate (infinity){[Ag(othf)](2)}, and silver(I) complexes with camphanic acid (infinity){[Ag(ca)]} and (infinity){[Ag(ca)(Hca)]}). The cluster was characterized by elemental analysis, TG/DTA, FTIR and single-crystal X-ray analysis in the solid state. The solution properties of the complexes were investigated using solution molecular weight measurement, ESI-MS and solution ((1)H, (13)C and (31)P) NMR spectroscopy. The obtained cluster is a novel example of a light-stable Ag(I) cluster with a tridentate thiosemicarbazone ligand and the second report of a crystal structure of a thiosemicarbazone silver(I) complex. The reaction of the tetramer with a large excess of PPh(3) gave dimeric complexes, namely, [Ag(micro(S)-mtsc)(PPh(3))](2) and [(PPh(3))(2)Ag(micro(S)-mtsc)(2)Ag]. The chloroform solution of the tetrameric complex showed modest and effective activities against selected bacteria (Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa) and yeasts (Candida albicans and Saccharomyces cerevisiae), respectively, but it did not inhibit the growth of any selected microorganisms in a water-suspension system.  相似文献   

6.
The electrochemical behavior of PEDOT/Ag composite films obtained by chemical deposition of ultrafine Ag particles into the poly-3,4-ethylenedioxythiophene (PEDOT) matrix was studied. The film morphology was characterized by transmission electron microscopy (TEM). The changes in the mass of the films during the chemical deposition of silver into the polymer structure were evaluated microgravimetrically. The mass of the included metallic silver particles depends on the synthesis time and the initial concentration of silver ions in solution. The cyclic voltammograms (CVs) of PEDOT/Ag films in sodium nitrate solutions and sodium nitrate solutions with additions of chloride ions were studied. The cyclic voltammograms of PEDOT/Ag films in chloride-containing solutions showed the peaks of the oxidation of silver and reduction of the oxidation product, which were absent on the CVs of the starting PEDOT film.  相似文献   

7.
Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.  相似文献   

8.
KrF laser photolysis of diphenyl ditelluride in 2-propanol yields a stable solution of tellurium nanosols, which reacts with immersed Ag sheets to yield thin silver telluride films. The nanosols were identified by UV–vis spectroscopy and the films were characterized by electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. It is revealed that the films are mostly amorphous and contain small contributions of cubic as well as monoclinic Ag2Te structures. The procedure provides the first example of the fast formation of silver telluride thin films by reaction between the elements in inert solvent at room-temperature.  相似文献   

9.
Adenosine triphosphate (ATP)-capped silver nanoparticles (ATP-Ag NPs) were synthesized by reduction of AgNO(3) with borohydride in water with ATP as a capping ligand. The NPs obtained were characterized using transmission electron microscopy (TEM), UV-vis absorption spectroscopy, X-ray diffraction, and energy-dispersive X-ray analysis. A typical preparation produced ATP-Ag NPs with diameters of 4.5 ± 1.1 nm containing ~2800 Ag atoms and capped with 250 ATP capping ligands. The negatively charged ATP caps allow NP incorporation into layer-by-layer (LbL) films with poly(diallyldimethylammonium) chloride at thiol-modified Au electrode surfaces. Cyclic voltammetry in a single-layer LbL film of NPs showed a chemically reversible oxidation of Ag NPs to silver halide NPs in aqueous halide solutions and to Ag(2)O NPs in aqueous hydroxide solutions. TEM confirmed that this takes place via a redox-driven solid-state phase transformation. The charge for these nontopotactic phase transformations corresponded to a one-electron redox process per Ag atom in the NP, indicating complete oxidation and reduction of all Ag atoms in each NP during the electrochemical phase transformation.  相似文献   

10.
We have prepared novel ionic liquids of bis(N-2-ethylhexylethylenediamine)silver(I) nitrate ([Ag(eth-hex-en)(2)]NO(3) and bis(N-hexylethylenediamine)silver(I) hexafluorophosphate ([Ag(hex-en)(2)]PF(6)), which have transition points at -54 and -6 degrees C, respectively. Below these transition temperatures, both the silver complexes assume amorphous states, in which the extent of the vitrification is larger for the eth-hex-en complex than for the hex-en complex. The diffusion coefficients of both the complex cations, measured between 30 (or 35) and 70 degrees C, are largely dependent on temperature; the dependence is particularly large in the case of the eth-hex-en complex cation below 40 degrees C. Small-angle X-ray scattering studies showed that the bilayer structure of the metal complex is formed in the liquid state for both the silver complexes. A direct observation of the yellowish [Ag(eth-hex-en)(2)]NO(3) liquid by transmission electron microscopy (TEM) indicates the presence of nanostructures, as a microemulsion, of less than 5 nm. Such structures were not clearly observed in the [Ag(hex-en)(2)]PF(6) liquid. Although the [Ag(eth-hex-en)(2)]NO(3) liquid is sparingly soluble in bulk water, it readily incorporates a small amount of water up to [water]/[metal complex] = 7:1. Homogeneous and uniformly sized silver(0) nanoparticles in water were created by the reduction of the [Ag(eth-hex-en)(2)]NO(3) liquid with aqueous NaBH(4), whereas silver(0) nanoparticles were not formed from the [Ag(hex-en)(2)]PF(6) liquid in the same way.  相似文献   

11.
Synthetic, spectroscopic, and single-crystal X-ray structural studies of diverse complexes of silver(I) acylpyrazolonate salts AgQ(R') (QH = 1-phenyl-3-methyl-4-R'(C=O)-pyrazol-5-one; Q(1), R = Ph; Q(2), R' = CF(3); Q(3), R' = Me) with neutral ligands L = unidentate PR(3) (R = Ph, o-tolyl, cyclohexyl) and Hmimt (1-methyl-2-mercaptoimidazole) and bidentate dppe (Ph(2)P(CH(2))(2)PPh(2)) and trimen (N,N,N'-trimethylethylenediamine) define the donor capability of the anionic Q(R') ligand in a variety of roles. In the free ligand Q(3)H (which crystallizes in the monoclinic space group C2/c (no. 15), Z = 8, unit cell parameters a = 17.981(6) A, b = 5.0641(4) A, c = 24.271(6) A, and beta = 99.67(2)), the acidic OH group hydrogen-bonds intramolecularly to the adjacent pyrazolone oxygen, i.e., the two oxygen atoms are cis, true of the other Q(R') species structurally characterized here in their anionic complexed forms, in which they chelate the silver in the usual beta-diketonate manner, but not of the free anion, found in the array [Ag(Ph(3)P)(Hmimt)(2)](Q(1)) (triclinic space group P(-)1(no. 2), Z = 2, unit cell parameters a = 11.553(1) A, b = 11.943(1) A, c = 15.479(2) A, alpha = 74.829(2), beta = 76.094(2), and gamma = 78.185(2)), or [Ag(trimen)Q(1)] (monoclinic space group P2(1)/c (no. 14), Z = 4, unit cell parameters a = 7.982(1) A, b = 12.299(2) A, c = 21.507(3) A, and beta = 95.119(3)), which forms an infinite one-dimensional polymer string, Q(1) linking successive silver(I) atoms by coordination by way of the unsubstituted nitrogen and the pyrazolonate oxygen. In all [Ag(R(3)P)(2)(chelate-Q(1))] (R = Ph, Cy) complexes, P(2)Ag(O,O') arrays are found (R = Ph, monoclinic space group C2/c (no. 15), Z = 8, unit cell parameters a = 16.193(8) A, b = 13.859(7) A, c = 39.306(7) A, and beta = 100.02(3); R = Cy, triclinic space group P(-)1(no. 2), Z = 2, unit cell parameters a = 10.4655(9) A, b = 12.079(1) A, c = 22.804(2) A, alpha = 104.872(2), beta = 95.180(2), and gamma = 104.144(2)), also true of [Ag(Ph(3)P)(2)(O,O'-Q(2))] (triclinic space group P(-)1(no. 2), Z = 2, unit cell parameters a = 10.672(2) A, b = 10.710(2) A, c = 18.713(3) A, alpha = 87.573(2), beta = 80.972(2), and gamma = 81.734(2)), whereas [Ag(o-tol(3)P)Q(1)] (monoclinic space group P2(1)/c (no. 14), Z = 2 dimers, unit cell parameters a = 11.8221(6) A, b = 13.2601(6) A, c = 20.5141(10) A, and beta = 91.758(1)) exists as a dinuclear species containing two AgO(2)NP units where the acylpyrazolonate is coordinated in a bridging O,O'-Q-Nfashion. Silver atoms are four-coordinate in all except the Hmimt complex.  相似文献   

12.
Reactions of Na(tmeda)[N((i)Pr(2)PTe)(2)] with CuCl, AgI or AuCl (in the presence of PPh(3)) in THF produced the coinage metal ditelluroimidodiphosphinate complexes {Cu[N((i)Pr(2)PTe)(2)]}(3), (5), {Ag[N((i)Pr(2)PTe)(2)]}(6) (6) and Au(PPh(3))[N((i)Pr(2)PTe)(2)] (7), respectively. Complexes 5, 6 and 7 were characterized in the solid state by X-ray crystallography. Complex 5 is trimeric and exhibits a highly distorted Cu(3)Te(3) ring. In contrast, the Ag(I) complex 6 is a hexamer, and forms a twelve-membered Ag(6)Te(6) ring. The replacement of the (i)Pr groups on phosphorus by Ph results in an intriguing structural change to a tetramer with a boat-shaped Ag(4)Te(4) ring in {Ag[N(Ph(2)PTe)(2)}(4).2THF (8). The gold(I) complex 7 is monomeric. Aerosol-assisted chemical vapour deposition (AACVD) of compounds 5, 6 and 7 yields CuTe, Ag(7)Te(4), AuTe(2) and Au films, respectively. The films were grown at temperatures of 300-500 degrees C and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX).  相似文献   

13.
New dinuclear rhodium(II) pyrazolate (Pz) complexes of formula Rh(2)(3-R,5-R'Pz)(4)·2L (R = R' = CF(3), L = H(2)O (1), CH(3)CN (2)) and Rh(2)(3-R,5-R'Pz)(4) (R = R' = (t)Bu (3); R = CF(3), R' = (t)Bu (4)) have been synthesized from the interaction of the lithium salt of the corresponding pyrazole with Rh(2)(OAc)(4) in diethyl ether. The complexes were characterized by X-ray crystallography and spectroscopic methods. They were further evaluated as precursors for the chemical vapor deposition (CVD) of Rh thin films using H(2) as the carrier gas. The resulting films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).  相似文献   

14.
We developed a simple method for the preparation of polyelectrolyte/silver nanocomposites, where silver nanoparticles were dispersed in a polyelectrolyte. Copoly(TEAMPS/VP)/silver (w/w=100/0, 100/1, 100/2, 100/3 and 100/4) nanocomposites were obtained by a thermal decomposition reaction of silver carbamate complex at 130 degrees C, and well-dispersed silver colloids were stabilized by copolymer of tetraethylammonium 2-acrylamido-2-methyl-1-propanesulfonate (TEAMPS) and N-vinylpyrrolidone (VP). A dark brown solution in its UV-vis absorption spectrum showed surface plasmon resonance absorption bands at 420 nm in solution. The silver precursor and the resulting polyelectrolyte/Ag nanocomposite was characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), infrared (IR), transmission electron microscopy (TEM). In addition the humidity-sensing properties using copoly(TEAMPS/VP)/Ag nanocomposite films were examined.  相似文献   

15.
The reduction of silver ions in formamide is shown to take place spontaneously at room temperature without addition of any reductant. The growth of Ag particles was found to be dependent on Ag+ ion concentration. In the absence of any stabilizer, deposition of silver film on the glass walls of the container takes place. However, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) or colloidal silica (SiO2), which are capable of stabilizing silver nanoparticles by complexing and providing support, a clear dispersion was obtained. The formation of the silver nanoparticles under different conditions was investigated through UV-visible absorption spectrophotometry, gas chromatography, and also electron and atomic force microscopic techniques. Atomic force microscopy results for silver films prepared in the absence of any stabilizer showed the formation of polygonal particles with sizes around 100 nm. Transmission electron microscopy results showed that the prepared silver particles in the presence of PVP were around 20 nm. The Ag nanoparticles get oxidized in the presence of chloroform and toluene. Surface modification of silver film was done in the presence of the tetrasodium salt of ethylenediaminetetraaceticacid (Na4EDTA). It was shown that the reactivity of the silver film increased in its presence. The Fermi potential of silver particles in the presence of Na4EDTA seems to lie between -0.33 and -0.446 V vs NHE.  相似文献   

16.
Silver(I) complexes of the bis(pyrazolyl)methane ligands Ph(2)C(pz)(2), PhCH(pz)(2), and PhCH(2)CH(pz)(2) (pz = pyrazolyl ring) have been prepared in an attempt to explore how sterically hindered poly(pyrazolyl)methane ligands influence the variable coordination geometries exhibited by silver(I) complexes, especially its ability to participate in cation...pi interactions. The complex (Ag[(pz)(2)CPh(2)](2))(PF(6)).C(3)H(6)O adopts an unusual square planar coordination environment as indicated by the sum of the four N-Ag-N angles being 360 degrees. The proximity of phenyl groups above and below the AgN(4) core enforces the unusual coordination geometry about the metal center. This arrangement is not a result of silver(I)...pi arene interactions but rather of the constraints imposed by the steric crowding caused by (aryl)(2)C(pz)(2) ligands. In contrast, the complexes of the other two ligands, (Ag[(pz)(2)CHPh](2))(PF(6)).0.5CH(2)Cl(2) and (Ag[(pz)(2)CH(CH(2)Ph)](2))(PF(6)).CH(2)Cl(2), show normal tetrahedral geometry about the silver(I), also with no indication of silver(I)...pi arene interactions. All three new complexes have extended supramolecular structures supported by a combination of CH...pi and CH...F interactions.  相似文献   

17.
Nanocomposite ZnO–Ag thin film containing nano-sized Ag particles have been grown on glass substrate by spin-coating technique using zinc acetate dihydrate as starting precursor in 2-propanol as solvent and monoethanolamine as stabilizer. Silver nanoparticles were added in the ZnO sol using silver nitrate dissolved in ethanol-acetonitrile. Their structural, electrical, crystalline size and optical properties were investigated as a function of preheating, annealing temperature and silver content. The results indicated that the crystalline phase was increased with increase of annealing temperature up to 550 °C at optimum preheating temperature of 275 °C. Thermal gravimetric differential thermal analysis results indicated that the decomposition of pure ZnO and nanocomposite ZnO–Ag precursors occurred at 225 and 234 °C, respectively with formation of ZnO wurtzite crystals. The scanning electron microscopy and atomic force microscopy revealed that the surface structure (the porosity and grain size) of the ZnO–Ag thin film (the film thickness is about 379 nm) was changed compared to pure ZnO thin film. The result of transmission electron microscopy showed that Ag particles were about 5 nm and ZnO particles 58 nm with uniform silver nanoclusters. Optical absorption results indicated that optical absorption of ZnO–Ag thin films decreased with increase of annealing temperature. Nanocomposite ZnO–Ag thin films with [Ag] = 0.068 M and [Ag] = 0.110 M showed an intense absorption band, whose maximum signals appear at 430 nm which is not present in pure ZnO thin films. The result of X-ray photoelectron spectroscopy revealed that the binding energy of Ag 3d5/2 for ZnO–Ag shifts remarkably to the lower binding energy compared to the pure metallic Ag due to the interaction between Ag and ZnO.  相似文献   

18.
The reaction of pyridylbis(3-hexamethyleneiminyl thiosemicarbazone) (H(2)Plhexim) with various silver(I) salts and metal-ligand ratios led to the isolation of different complexes of the formulae [Ag(NO(3))(H(2)Plhexim)]·H(2)O (1), [Ag(2)(NO(3))(H(2)Plhexim)(CH(3)OH)](NO(3)) (2), [Ag(2)(ClO(4))(2)(H(2)Plhexim)] (3), [Ag(HPlhexim)]·xH(2)O (4), [Ag(HPlhexim)] (4a), [Ag(2)(Plhexim)(PPh(3))(4)]·2MeOH (5) and [Ag(4)(Plhexim)(2)]·DMF (6). The complexes were fully characterized by elemental analysis, ESI mass spectrometry, IR and NMR ((1)H, (31)P) spectroscopy. The structures of 4a, 5 and 6 were also identified by single crystal X-ray structure determination. The concentration dependence on the absorption spectra of the methanolic solutions indicates polymerization equilibria in the ground state in both the ligand and the complexes. While H(2)Plhexim is essentially non-fluorescent, complexes 1-5 fluoresce more strongly by comparison. This fluorescent behavior is consistent with the monomeric or dimeric nature of the complexes.  相似文献   

19.
Ultrathin films of ZnS were grown on Au (111) substrates using a novel, simple co-deposition method and characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Cyclic voltammograms were used to determine approximate deposition potentials for co-deposition. XRD shows that the material growth is highly preferential with (111) orientation. Both AFM and XRD data indicate that the ZnS growth mechanism starts by the formation of rounded nanoparticles at the surface and then continues by lateral and vertical growth to form flat square crystallites of ZnS. UV-vis spectra taken for the ZnS thin films with various thicknesses, which is related to deposition time, shows that the band gap of the ZnS decreases as the film thickness increases.  相似文献   

20.
Structural study of silver(I) sulfonate complexes with pyrazine derivatives   总被引:1,自引:0,他引:1  
Liu HY  Wu H  Ma JF  Song SY  Yang J  Liu YY  Su ZM 《Inorganic chemistry》2007,46(18):7299-7311
In this Article, 11 silver complexes, namely, [Ag(L1)(2-Pyr)(H2O)] (1), Ag(L1)(2,3-Pyr) (2), [Ag2(L1)2(2Et,3Me-Pyr)2(H2O)] (3), [Ag(2,6-Pyr)](L1).1.5H2O (4), Ag(L1)(2,5-Pyr) (5), [Ag(H2O)2](L2).H2O (6), [Ag(L2)(2-Pyr)] (7), [Ag(L2)(2,3-Pyr)].1.5H2O (8), [Ag(L2)(2Et,3Me-Pyr)].2H2O (9), [Ag2(L2)(2,6-Pyr)(H2O)2](L2).H2O (10) and [Ag(L2)(2,5-Pyr)].H2O (11) (2-Pyr=2-methylpyrazine; 2,3-Pyr=2,3-dimethylpyrazine; 2Et,3Me-Pyr=2-ethyl-3-methylpyrazine; 2,6-Pyr=2,6-dimethylpyrazine; 2,5-Pyr=2,5-dimethylpyrazine; L1=p-aminobenzenesulfonate anion and L2=6-amino-1-naphthalenesulfonate anion), have been synthesized and characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. In 1, 3, and 4, Ag(I) centers are linked by bridging pyrazine ligands to form one-dimensional chains, whereas compound 2 shows a double-chain structure through weak Ag-C interactions. The structure analyses show that both 5 and 11 form two-dimensional networks composed of 26-membered metallocycles. Unexpectedly, compounds 6 and 10 show discrete structures. In compound 7, silver(I) centers are bridged by sulfonate anions to form a polymeric helical structure, and the 2-Pyr molecule acts as a monodentate ligand. Compounds 8 and 9 show hinged chain structures containing 14-membered rings, and these chains interlace with each other to generate unique three-dimensional structures. These results indicate that the substituting groups and the substituting sites of pyrazine derivatives play an important role in the framework formation of silver complexes. Additionally, the luminescent properties of these compounds are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号