共查询到20条相似文献,搜索用时 15 毫秒
1.
Mihalca R van der Burgt YE McDonnell LA Duursma M Cerjak I Heck AJ Heeren RM 《Rapid communications in mass spectrometry : RCM》2006,20(12):1838-1844
A novel set-up for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is reported for simultaneous infrared multiphoton dissociation (IRMPD) and electron-capture dissociation (ECD). An unmodified electron gun ensures complete, on-axis overlap between the electron and the photon beams. The instrumentation, design and implementation of this novel approach are described. In this configuration the IR beam is directed into the ICR cell using a pneumatically actuated mirror inserted into the ion-optical path. Concept validation was made using different combinations of IRMPD and ECD irradiation events on two standard peptides. The ability to perform efficient IRMPD, ECD and especially simultaneous IRMPD and ECD using lower irradiation times is demonstrated. The increase in primary sequence coverage, with the combined IRMPD and ECD set-up, also increases the confidence in peptide and protein assignments. 相似文献
2.
Tsybin YO Ramström M Witt M Baykut G Håkansson P 《Journal of mass spectrometry : JMS》2004,39(7):719-729
The analytical utility of the electron capture dissociation (ECD) technique, developed by McLafferty and co-workers, has substantially improved peptide and protein characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The limitations of the first ECD implementations on commercial instruments were eliminated by the employment of low-energy electron-injection systems based on indirectly heated dispenser cathodes. In particular, the ECD rate and reliability were greatly increased, enabling the combination of ECD/FTICR-MS with on-line liquid separation techniques. Further technique development allowed the combination of two rapid fragmentation techniques, high-rate ECD and infrared multiphoton dissociation (IRMPD), in a single experimental configuration. Simultaneous and consecutive irradiations of trapped ions with electrons and photons extended the possibilities for ion activation/dissociation and led to improved peptide and protein characterization. The application of high-rate ECD/FTICR-MS has demonstrated its power and unique capabilities in top-down sequencing of peptides and proteins, including characterization of post-translational modifications, improved sequencing of peptides with multiple disulfide bridges and secondary fragmentation (w-ion formation). Analysis of peptide mixtures has been accomplished using high-rate ECD in bottom-up mass spectrometry based on mixture separation by liquid chromatography and capillary electrophoresis. This paper summarizes the current impact of high-rate ECD/FTICR-MS for top-down and bottom-up mass spectrometry of peptides and proteins. 相似文献
3.
Tsybin YO Håkansson P Budnik BA Haselmann KF Kjeldsen F Gorshkov M Zubarev RA 《Rapid communications in mass spectrometry : RCM》2001,15(19):1849-1854
New low-energy electron injection systems based on indirectly heated dispenser cathodes facilitate electron capture dissociation (ECD) in Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. In this joint report, details are presented of the design and performance of these systems on two commercial FTICR instruments, 9.4 T Bruker BioAPEX in Uppsala and 4.7 T IonSpec Ultima in Odense. New results include obtaining meaningful one-scan MS/MS data for isolated precursor ions with millisecond irradiation times. The ECD rate improvement is not only due to the larger total electron current, but the larger emitting area as well. 相似文献
4.
Electron capture dissociation (ECD) has been proposed to be a non-ergodic process, i.e. to provide backbone dissociation of gas-phase peptides faster than randomization of the imparted energy. One potential consequence could be that ECD can fragment deuterated peptides without causing hydrogen scrambling and thereby provide amino acid residue-specific amide hydrogen exchange rates. Such a feature would improve the resolution of approaches involving solution-phase amide hydrogen exchange combined with mass spectrometry for protein structural characterization. Here, we explore this hypothesis using melittin, a haemolytic polypeptide from bee venom, as our model system. Exchange rates in methanol calculated from consecutive c-type ion pairs show some correlation with previous NMR data: the amide hydrogens of leucine 13 and alanine 15, located at the unstructured kink surrounding proline 14 in the melittin structure adopted in methanol, appear as fast exchangers and the amide hydrogens of leucine 16 and lysine 23, buried within the helical regions of melittin, appear as slow exchangers. However, calculations based on c-type ions for other amide hydrogens do not correlate well with NMR data, and evidence for deuterium scrambling in ECD was obtained from z*-type ions. 相似文献
5.
Giuliana Bianco Cristiana Labella Antonietta Pepe Tommaso R. I. Cataldi 《Analytical and bioanalytical chemistry》2013,405(5):1721-1732
Two synthetic precursor peptides, H2N-CVGIW and H2N-LVMCCVGIW, involved in the quorum sensing of Lactobacillus plantarum WCFS1, were characterized by mass spectrometry (MS) with electrospray ionization and 7-T Fourier transform ion cyclotron resonance (ESI-FTICR) instrument. Cell-free bacterial supernatant solutions were analyzed by reversed-phase liquid chromatography with ESI-FTICR MS to verify the occurrence of both pentapeptide and nonapeptide in the bacterial broth. The structural characterization of both protonated peptides was performed by infrared multiphoton dissociation using a continuous CO2 laser source at a wavelength of 10.6 μm. As their fragmentation behavior cannot be directly derived from the primary peptide structure, all anomalous fragments were interpreted as neutral loss of amino acids from the interior of both peptides, i.e., loss of V, G, VG and M, MC, V, CC, from H2N-CVGIW and H2N-LVMCCVGIW, respectively. Mechanisms of this scrambling are proposed. FTICR MS provides accurate masses of all fragment ions with very low absolute mass errors (<1.6 ppm), which facilitated the reliable assignment of their elemental compositions. The resolving power was more than sufficient to resolve closely isobaric product ions with routine subparts per million mass accuracies. Only the occurrence of pentapeptide was found in the cell-free culture of L. plantarum, grown in Waymouth’s medium broth, with a low content of 5.2?±?2.6 μM by external calibration. Most of it was present as oxidized H2N-CVGIW, that is, the soluble disulfide pentapeptide with a level tenfold higher (i.e., 50?±?4 μM, n?=?3). Figure
IRMPD of the precursor protonated peptide, [H2N-CVGIW +H]+ at m/z 577.3 and suggested pathway showing the formation of peptide macrocycle and its selective ring opening. 相似文献
6.
7.
Tsybin YO Witt M Baykut G Håkansson P 《Rapid communications in mass spectrometry : RCM》2004,18(14):1607-1613
Electron capture dissociation (ECD) of polypeptide cations was obtained with pencil and hollow electron beams for both sidekick and gas-assisted dynamic ion trapping (GADT) using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) with an electrostatic ion transfer line. Increasing the number of trapped ions by multiple ICR trap loads using GADT improved the ECD sensitivity in comparison with sidekick ion trapping and ECD efficiency in comparison with single ion trap load by GADT. Furthermore, enhanced sensitivity made it possible to observe ECD in a wide range of electron energies (0-50 eV). The degree, rate and fragmentation characteristics of ECD FTICR-MS were investigated as functions of electron energy, electron irradiation time, electron flux and ion trapping parameters for this broad energy range. The results obtained show that the rate of ECD is higher for more energetic (>1 eV) electrons. Long electron irradiation time with energetic electrons reduces average fragment ion mass and decreases efficiency of formation of c- and z-type ions. The obtained dependencies suggest that the average fragment ion mass and the ECD efficiency are functions of the total fluence of the electron beam (electron energy multiplied by irradiation time). The measured electron energy distributions in low-energy ECD and hot ECD regimes are about 1 eV at full width half maximum in employed experimental configurations. 相似文献
8.
McFarland MA Chalmers MJ Quinn JP Hendrickson CL Marshall AG 《Journal of the American Society for Mass Spectrometry》2005,16(7):1060-1066
Electron capture dissociation (ECD) efficiency has typically been lower than for other dissociation techniques. Here we characterize
experimental factors that limit ECD and seek to improve its efficiency. Efficiency of precursor to product ion conversion
was measured for a range of peptide (∼15% efficiency) and protein (∼33% efficiency) ions of differing sizes and charge states.
Conversion of precursor ions to products depends on electron irradiation period and maximizes at ∼5–30 ms. The optimal irradiation
period scales inversely with charge state. We demonstrate that reflection of electrons through the ICR cell is more efficient
and robust than a single pass, because electrons can cool to the optimal energy for capture, which allows for a wide range
of initial electron energy. Further, efficient ECD with reflected electrons requires only a short (∼500 μs) irradiation period
followed by an appropriate delay for cooling and interaction. Reflection of the electron beam results in electrons trapped
in or near the ICR cell and thus requires a brief (∼50 μs) purge for successful mass spectral acquisition. Further electron
irradiation of refractory precursor ions did not result in further dissociation. Possibly the ion cloud and electron beam
are misaligned radially, or the electron beam diameter may be smaller than that of the ion cloud such that remaining precursor
ions do not overlap with the electron beam. Several ion manipulation techniques and use of a large, movable dispenser cathode
reduce the possibility that misalignment of the ion and electron beams limits ECD efficiency. 相似文献
9.
Palmblad M Tsybin YO Ramström M Bergquist J Håkansson P 《Rapid communications in mass spectrometry : RCM》2002,16(10):988-992
Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications. 相似文献
10.
Tsybin YO Quinn JP Tsybin OY Hendrickson CL Marshall AG 《Journal of the American Society for Mass Spectrometry》2008,19(6):762-771
Successful electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applications to peptide and protein structural analysis have been enabled by constant progress in implementation of improved electron injection techniques. The rate of ECD product ion formation has been increased to match the liquid chromatography and capillary electrophoresis timescales, and ECD has been combined with infrared multiphoton dissociation in a single experimental configuration to provide simultaneous irradiation, fast switching between the two techniques, and good spatial overlap between ion, photon, and electron beams. Here we begin by describing advantages and disadvantages of the various existing electron injection techniques for ECD in FT-ICR MS. We next compare multiple-pass and single-pass ECD to provide better understanding of ECD efficiency at low and high negative cathode potentials. We introduce compressed hollow electron beam injection to optimize the overlap of ion, photon, and electron beams in the ICR ion trap. Finally, to overcome significant outgassing during operation of a powerful thermal cathode, we introduce nonthermal electron emitter-based electron injection. We describe the first results obtained with cold cathode ECD, and demonstrate a general way to obtain low-energy electrons in FT-ICR MS by use of multiple-pass ECD. 相似文献
11.
Stefanie M?dler 《Journal of the American Society for Mass Spectrometry》2001,12(3):243-244
Editorial
Focus on Fourier transform ion cyclotron resonance mass spectrometry 相似文献12.
Fukui K Naito Y Akiyama Y Takahashi K 《European journal of mass spectrometry (Chichester, England)》2004,10(5):639-647
In this study, the fragmentation of gas-phase protonated Angiotensin II is investigated using electrospray ionization (ESI), Fourier-transform ion cyclotron resonance (FT-ICR), and mass spectrometry (MS) with a laser cleavage infrared multiphoton dissociation (IRMPD) technique. The experimental results show that the spectra peaks for the photoproducts are y2/b6- and y7-type ions, corresponding to the cleavage of His-Pro and Asp-Arg in the parent amino acid sequence. The fragmentation of the peptide under collision-free vacuum conditions is modeled using molecular dynamics simulations (MD). The binding energy for the peptide bonds (C'-N bond) of Angiotensin II is estimated from ab initio calculations. The calculations are directed at predicting experimental measurements of the product ions from the photodissociation of the peptide. The product distributions simulated by the MD dissociation trajectories include predominantly y7/b1 and y2/b6 pair ions. 相似文献
13.
Polfer NC Haselmann KF Zubarev RA Langridge-Smith PR 《Rapid communications in mass spectrometry : RCM》2002,16(10):936-943
Electron capture dissociation (ECD) of polypeptides has been demonstrated using a commercially available 3 Tesla Fourier transform ion cyclotron resonance (FTICR) instrument. A conventional rhenium filament, designed for high-energy electron impact ionisation, was used to effect ECD of substance P, bee venom melittin and bovine insulin, oxidised B chain. A retarding field analysis of the effective electron kinetic energy distribution entering the ICR cell suggests that one of the most important parameters governing ECD for this particular instrument is the need to employ low trapping plate voltages. This is shown to maximise the abundance of low-energy electrons. The demonstration of ECD at this relatively low magnetic field strength could offer the prospect of more routine ECD analysis for the wider research community, given the reduced cost of such magnets and (at least theoretically) the greater ease of electron/ion cloud overlap at lower field. 相似文献
14.
Kosaka T Yoneyama-Takazawa T Kubota K Matsuoka T Sato I Sasaki T Tanaka Y 《Journal of mass spectrometry : JMS》2003,38(12):1281-1287
We have developed a method for protein identification with peptide mass fingerprinting and sequence tagging using nano liquid chromatography (LC)/Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). To achieve greater sensitivity, a nanoelectrospray (nano-ES) needle packed with reversed-phase medium was used and connected to the nano-ES ion source of the FTICR mass spectrometer. To obtain peptide sequence tag information, infrared multiphoton dissociation (IRMPD) was carried out in nano-LC/FTICR-MS analysis. The analysis involves alternating nano-ES/FTICR-MS and nano-ES/IRMPD-FTICR-MS scans during a single LC run, which provides sets of parent and fragment ion masses of the proteolytic digest. The utility of this alternating-scan nano-LC/IRMPD-FTICR-MS approach was evaluated by using bovine serum albumin as a standard protein. We applied this approach to the protein identification of rat liver diacetyl-reducing enzyme. It was demonstrated that this enzyme was correctly identified as 3-alpha-hydroxysteroid dehydrogenase by the alternating-scan nano-LC/IRMPD-FTICR-MS approach with accurate peptide mass fingerprinting and peptide sequence tagging. 相似文献
15.
F. Lelario C. Labella G. Napolitano L. Scrano S. A. Bufo 《Rapid communications in mass spectrometry : RCM》2016,30(22):2395-2406
16.
Suspended trapping is used to eject electrons in negative-ion Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometric experiments. In contrast to electron ejection by resonant excitation of the trapping motion, suspended trapping involves allowing the electrons to escape along the z-axis (perpendicular to the trap plates) while the trapping potential is briefly removed. The duration of this event is sufficiently short (~10 μs) so that ion losses are negligible; the overall effect is that of a ‘high-pass mass filter’. Suspended trapping is simpler to implement and more generally applicable to various cell geometries than resonant electron ejection. The effectiveness of the suspended trapping technique is not compromised by the anharmonicity of the potential well in ‘elongated’ ICR traps, but depends simply on the time it takes the electrons to escape the cell. Finally, a small, positive offset potential (~+0.25 V) applied to the trap plates during the suspended trapping event increases the efficiency of the ejection. 相似文献
17.
《International journal of mass spectrometry and ion processes》1995,141(2):161-170
Trapping of ions in the electron beam of a FTICR mass spectrometer is investigated and a simple model describing the confinement process is presented. Detection of resistive-wall destabilization of the magnetron motion of ions in the trapped-ion cell is used to determine conditions for ion trapping within and escape from the electron beam. The model predicts a potential well that is dependent on electron beam current, energy, and dimension in defining its capacity for low energy ions. Plots of ion retention time versus ion number are consistent with a model in which ions are initially trapped in the electron beam but with increasing ion formation will eventually overcome the potential depression in the electron beam and escape into magnetron orbits. Based upon this model, expressions are derived for ion retention time which are then fit to the experimental data. The model is used to estimate ion number, initial magnetron radius and ion cloud shape and density. One example in which electron trapping is important in the FTICR experiment is in the efficient transfer of ions between dual trapped-ion cells. Ion transfer within the potential depression of the electron beam environment is shown to be virtually 100% efficient over a 10 ms interval whereas all ions are lost to collisions with the conductance limit after 2 ms when transferring without the confining aid of the electron beam. Several analytical applications of electron traps in the ICR cell are now being investigated. 相似文献
18.
Axelsson J Palmblad M Håkansson K Håkansson P 《Rapid communications in mass spectrometry : RCM》1999,13(6):474-477
Electron capture dissociation of the peptide Substance P is reported for the first time, with an unmodified, commercially available Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The fragmentation pattern is compared with that obtained with collisionally induced dissociation of the ions in the electrospray ion source, and note that electron capture dissociation gives a more easily interpreted spectrum, showing mainly C-fragments. With the exception of the proline residues, which require cleavage of two chemical bonds, we observe all C-fragmental we find the bias voltage of the electron gun not to be very critical. 相似文献
19.
20.
Fagerquist CK Hudgins RR Emmett MR Håkansson K Marshall AG 《Journal of the American Society for Mass Spectrometry》2003,14(4):302-310
Desfuroylceftiofur (DFC) is a bioactive beta-lactam antibiotic metabolite that has a free thiol group. Previous experiments have shown release of DFC from plasma extracts after addition of a disulfide reducing agent, suggesting that DFC may be bound to plasma and tissue proteins through disulfide bonds. We have reacted DFC with [Arg(8)]-vasopressin (which has one disulfide bond) and bovine insulin (which has three disulfide bonds) and analyzed the reaction products by use of electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD FT-ICR MS), which has previously shown preferential cleavage of disulfide bonds. We observe cleavage of DFC from vasopressin and insulin during ECD, suggesting that DFC is indeed bound to peptides and proteins through disulfide bonds. Specifically, we observed dissociative loss of one, as well as two, DFC species during ECD of [vasopressin + 2(DFC-H) + 2H](2+) from a single electron capture event. Loss of two DFCs could arise from either consecutive or simultaneous loss, but in any case implies a gas phase disulfide exchange step. ECD of [insulin + DFC + 4H](4+) shows preferential dissociative loss of DFC. Combined with HPLC, ECD FT-ICR-MS may be an efficient screening method for detection of drug-biomolecule binding. 相似文献