首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.  相似文献   

3.
An accurate three-dimensional potential energy surface(PES) for the He-Na2 van der Waals comple was calculated at the coupled cluster singles-and-doubles with noniterative inclusion of connecte triple(CCSD(T)) level of theory.A mixed basis set,aug-cc-pVQZ for the He atom and cc-pCVQZ for th sodium atom,and an additional(3s3p2d1f) set of midbond functions were used.The computed inte action energies in 819 configurations were fitted to a 96-parameter analytic potential model by leas squares fitting.The PES has two shallow wells corresponding to the T-shaped structure and the linea configuration,which are located at 12.5a0 and 14 a0 with depths of 1.769 and 1.684 cm-1,respectivel The whole potential energy surface exhibits weak anisotropy.Based on the fitted PES,state-to-stat differential cross sections were calculated.  相似文献   

4.
We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a proton donor to the oxygen atom on water. A local minimum with Cs symmetry has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by 1097 microEh (Eh approximately 4.359744 x 10(-18) J). Our best estimate of the binding energy, from a complete basis set extrapolation of coupled-cluster calculations, is 1076.1 microEh. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a smaller temperature range (230-700 K). Generally good agreement is found, but the experimental data are subject to larger uncertainties.  相似文献   

5.
Full-dimensional ab initio potential energy surface is constructed for the H(7)(+) cluster. The surface is a fit to roughly 160,000 interaction energies obtained with second-order M?llerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm(-1) for the entire data set. The surface dissociates correctly to the H(5)(+) + H(2) fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H(7)(+) cluster for carrying out dynamics studies.  相似文献   

6.
The multiscale coarse-graining (MS-CG) method uses simulation data for an atomistic model of a system to construct a coarse-grained (CG) potential for a coarse-grained model of the system. The CG potential is a variational approximation for the true potential of mean force of the degrees of freedom retained in the CG model. The variational calculation uses information about the atomistic positions and forces in the simulation data. In principle, the resulting MS-CG potential will be an accurate representation of the true CG potential if the basis set for the variational calculation is complete enough and the canonical distribution of atomistic states is well sampled by the data set. In practice, atomistic configurations that have very high potential energy are not sampled. As a result there usually is a region of CG configuration space that is not sampled and about which the data set contains no information regarding the gradient of the true potential. The MS-CG potential obtained from a variational calculation will not necessarily be accurate in this unsampled region. A priori considerations make it clear that the true CG potential of mean force must be very large and positive in that region. To obtain an MS-CG potential whose behavior in the sampled region is determined by the atomistic data set, and whose behavior in the unsampled region is large and positive, it is necessary to intervene in the variational calculation in some way. In this paper, we discuss and compare two such methods of intervention, which have been used in previous MS-CG calculations for dealing with nonbonded interactions. For the test systems studied, the two methods give similar results and yield MS-CG potentials that are limited in accuracy only by the incompleteness of the basis set and the statistical error of associated with the set of atomistic configurations used. The use of such methods is important for obtaining accurate CG potentials.  相似文献   

7.
The [2](R12) method [M. Torheyden and E. F. Valeev, J. Chem. Phys. 131, 171103 (2009)] is an explicitly correlated perturbative correction that can greatly reduce the basis set error of an arbitrary electronic structure method for which the two-electron density matrix is available. Here we present a spin-adapted variant (denoted as SF-[2](R12)) that is formulated completely in terms of spin-free quantities. A spin-free cumulant decomposition and multi-reference generalized Brillouin condition are used to avoid three-particle reduced density matrix completely. The computational complexity of SF-[2](R12) is proportional to the sixth power of the system size and is comparable to the cost of the single-reference MP2-R12 method. The SF-[2](R12) method is shown to decrease greatly the basis set error of multi-configurational wave functions.  相似文献   

8.
Two analytical representations for the potential energy surface of the F(2) dimer were constructed on the basis of ab initio calculations up to the fourth-order of M?ller-Plesset (MP) perturbation theory. The best estimate of the complete basis set limit of interaction energy was derived for analysis of basis set incompleteness errors. At the MP4/aug-cc-pVTZ level of theory, the most stable structure of the dimer was obtained at R = 6.82 au, theta(a) = 12.9 degrees , theta(b) = 76.0 degrees , and phi = 180 degrees , with a well depth of 716 microE(h). Two other minima were found for canted and X-shaped configurations with potential energies around -596 and -629 microE(h), respectively. Hexadecapole moments of monomers play an important role in the anisotropy of interaction energy that is highly R-dependent at intermediate intermolecular distances. The quality of potentials was tested by computing values of the second virial coefficient. The fitted MP4 potential has a more reasonable agreement with experimental values.  相似文献   

9.
We developed a series of correlation-consistent, polarized multiple zeta basis sets optimized specifically for the energy of the 2 3S state of helium atom. These basis sets were subsequently augmented with diffuse functions optimized for the van der Waals constants C6 through C14 which determine the asymptotic behavior of the second-order dispersion interaction between 2 3S helium atoms at large interatomic separation R. The resulting bases were applied to compute the Born-Oppenheimer (BO) potential for the lowest 5Sigmag+ state of the helium dimer. The coupled cluster and the full configuration-interaction techniques were employed to account for the electron correlation effects. The cardinal number extrapolation technique was used to obtain the complete-basis-set limit V(R) for the interaction potential and to find its lower VL(R) and upper VU(R) bounds. The resulting potentials were fitted to an analytical function containing accurate van der Waals constants C6 through C12 (including C11). We found that the complete-basis-set BO potential has a well depth De=1048.24+/-0.36 cm-1. The highest rotationless vibrational level is bound by D14=90.2+/-4.7 MHz, much stronger than the previous most accurate estimation of 15.2 MHz. The error bounds for De and D14 were obtained using the VL(R) and VU(R) potentials. The S-wave scattering length computed using the VL(R), V(R), and VU(R) potentials (assuming atomic masses) is aL=7.41 nm, a=7.54 nm, and aU=7.69 nm, respectively. We also computed the adiabatic, relativistic, and quantum electrodynamics (QED) corrections to the BO potential. When these corrections are taken into account the values of D14 and of a (both computed assuming nuclear masses) are 87.4+/-6.7 MHz and 7.64+/-0.20 nm; the error bounds reflect now also the uncertainty of the included adiabatic, relativistic, and QED corrections. The value of the scattering length resulting from our investigation lies outside the error bounds of all experimental determinations based on the properties of Bose-Einstein condensate of spin-polarized helium atoms.  相似文献   

10.
Ab initio calculations at the CCSD(T) level of theory were performed to characterize the Ar + CF4 intermolecular potential. Potential energy curves were calculated with the aug-cc-pVTZ basis set, and with and without a correction for basis set superposition error (BSSE). Additional calculations were performed with other correlation consistent basis sets to extrapolate the Ar-CF4 potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF4 potential. Calculations with the aug-cc-pVTZ basis set, and with a BSSE correction, appear to give a good representation of the BSSE corrected potential at the CBS limit. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two model analytic potential energy functions were determined for Ar + CF4. One is a fit to the aug-cc-pVTZ calculations with a BSSE correction. The second was derived by fitting an average BSSE corrected potential, which is an average of the CCSD(T)/aug-cc-pVTZ potentials with and without a BSSE correction. These analytic functions are written as a sum of two-body potentials and excellent fits to the ab initio potentials are obtained by representing each two-body interaction as a Buckingham potential.  相似文献   

11.
Interaction energies between an alanine zwitterion and a water molecule at 150 different positions and orientations have been calculated using the ab initio method with the minimal basis set and employing the counterpoise method to eliminate the basis set superposition error. Dispersion energies are estimated using the Slater–Kirkwood formula. Out of a total of 150 computed interaction energies, 140 whose SCF interaction energies are below 5 kcal/mol have been fitted with a summation of atom-atom pair potentials in the form of the Lennard–Jones potential plus an electrostatic term. The standard deviation for this fitting is 0.49 kcal/mol. A sampling scheme regarding geometrical configurations is presented. Twenty rays are uniformly drawn from the origin of coordinates, a floatable division with equal ratios is made along each ray, and one of 60 orientations is randomly taken as the orientation of a water molecule. A nonlinear fitting method is used with a restriction on the sign change of fitting coefficients.  相似文献   

12.
Potential energy functions (PEFs) parametrized to bulk data are shown to perform poorly for small aluminum nanoparticles and clusters. In contrast, PEFs parametrized to a limited set of cluster and bulk data, but no nanoparticle data, perform well for nanoparticles. This validates a practical scheme for developing PEFs for nanoscale systems. Building on these findings, we optimized five PEFs by minimizing the error in the fit over a broad data set. Two of these PEFs have errors of less than or equal to 0.08 eV/atom for each of three categories of system sizes, i.e., for small clusters, for nanoparticles, and for bulk potential energies.  相似文献   

13.
A six-dimensional interaction potential for the water dimer has been fitted to ab initio interaction energies computed at 2510 dimer configurations. These energies were obtained by combining the supermolecular second-order energies extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The energies have been fitted using an analytic form with the induction component represented by a polarizable term, making the potential directly transferable to clusters and the bulk phase. Geometries and energies of stationary points on the potential surface agree well with the results of high-level ab initio geometry optimizations.  相似文献   

14.
We report an ab initio intermolecular potential energy surface of the Ar-HCCCN complex using a supermolecular method. The calculations were performed using the fourth-order M?ller-Plesset theory with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ar atom facing the H atom. The T-shaped minimum is the global minimum with the well depth of 236.81 cm(-1). A potential barrier separating the two minima is located at R=5.57 A and theta=20.39 degrees with the height of 151.59 cm(-1). The two-dimensional discrete variable representation was employed to calculate the rovibrational energy levels for Ar-HCCCN. The rovibrational spectra including intensities for the ground state and the first excited intermolecular vibrational state are also presented. The results show that the spectra are mostly b-type (Delta K(a)=+/-1) transitions with weak a-type (Delta K(a)=0) transitions in structure, which are in good agreement with the recent experimental results [A. Huckauf, W. Jager, P. Botschwina, and R. Oswald, J. Chem. Phys. 119, 7749 (2003)].  相似文献   

15.
近年来, 在体系间弱相互作用势函数的研究领域中, 理论及实验两个方面都取得很大的进展. 对于闭壳层体系间相互作用(中性原子与分子的相互作用)研究得比较清楚[1,2]. 然而, 开壳层与闭壳层体系的相互作用, 特别是中性原子与离子的研究成为当前的一个重要研究方向.  相似文献   

16.
A method is devised for dealing with almost linearly dependent basis sets that contain large sets of bond functions. Using the largest of such basis sets, LARSAT, the second-order Møller-Plesset polarization dispersion energy of the helium dimer is calculated to be - 17.08 K at R = 5.6 bohrs. MR-SDCI calculations, employing a set of 37 reference configurations, were performed for the helium dimer with several basis sets at 4.0 and 5.6 bohrs. Size-extensivity corrections were included to take into account the R dependency of the size-extensivity error in MR-SDCI calculations. The He2 interaction energies computed with basis LARSAT are - 10.92 K at 5.6 bohrs and 295.1 K at 4.0 bohrs. The 37-MR-SDCI calculations with basis LARSAT almost reproduce the He2 full configuration interaction (CI) interaction energies computed with the same basis, at notably smaller cost. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 805–815, 1997  相似文献   

17.
The electronic structure of the benzyl radical in its ground state has been computed using a model Hamiltonian due to Pariser–Parr with full configuration interaction as well as with different truncated configurational sets built on SCF open-shell orbitals. The correlation energy corresponding to this model was found to be equal to –0.929722 eV. With the singly excited configurations only 18% of this energy is taken into account. By extending the basis to include the doubly excited configurations one can account for 94% of the correlation energy. An analysis of the accuracy of the proton hyperfine splitting calculation caused by inaccurate computation of the wave function is given. If only singly and even doubly excited configurations are taken into account one cannot hope to obtain splittings with an accuracy of more than 0.5 g. Inclusion of triply excited configurations lowers this error by one order. In addition, the use of the simple McConnell relation may lead to an error in splitting calculations of no less than 1.5 g.  相似文献   

18.
A fast algorithm of vibrational second-order Moller-Plesset perturbation theory is proposed, enabling a substantial reduction in the number of vibrational self-consistent-field (VSCF) configurations that need to be summed in the calculations. Important configurations are identified a priori by assuming that a reference VSCF wave function is approximated well by harmonic oscillator wave functions and that fifth- and higher-order anharmonicities are negligible. The proposed scheme has reduced the number of VSCF configurations by more than 100 times for formaldehyde, ethylene, and furazan with an error in computed frequencies being not more than a few cm(-1).  相似文献   

19.
The accuracy of several low-cost methods (harmonic oscillator approximation, CT-Comega, SR-TDPPI-HS, and TDPPI-HS) for calculating one-dimensional hindered rotor (1D-HR) partition functions is assessed for a test set of 644 rotations in 104 organic molecules, using full torsional eigenvalue summation (TES) as a benchmark. For methods requiring full rotational potentials, the effect of the resolution at which the rotational potential was calculated was also assessed. Although lower-cost methods such as Pitzer's Tables are appropriate when potentials can be adequately described by simple cosine curves, these were found to show large errors (as much as 3 orders of magnitude) for non-cosine curve potentials. In those cases, it is found that the TDPPI-HS method in conjunction with a potential compiled at a resolution of 60 degrees offers the best compromise between accuracy and computational expense. It can reproduce the benchmark values of the partition functions for an individual mode to within a factor of 2; its average error is just of a factor of 1.08. The corresponding error in the overall internal rotational partition functions of the molecules studied is less than a factor of 4 in all cases. Excellent cost-effective performance is also offered by CT-Comega, which requires only the geometries, energies, and frequencies of the distinguishable minima in the potential. With this method the geometric mean error in individual partition functions is 1.14, the maximum error is a modest 2.98 and the resulting error in the total 1D-HR partition function of a molecule is less than a factor of 5 in all cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号