首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multireference configuration interaction calculations have been carried out for low-lying electronic states of AsH(3). Bending potentials for the nine lowest states of AsH(3) are obtained in C(3v) symmetry for As-H distances fixed at the ground state equilibrium value of 2.850 a(0), as well as for the minimum energy path constrained to R(1) = R(2) = R(3). The calculated equilibrium geometry and bond energy for the X (1)A(1) ground state agree very well with the previous experimental and theoretical data. It is shown that the lowest excited singlet state belongs to the (1)A(1) symmetry (in C(3v)), in contradiction to the previous calculations. This state is characterized by a planar equilibrium geometry. Asymmetric stretch potential energy surface (PES) cuts along the H(2)As-H recoil coordinate (at R(1) = R(2) = 2.850 a(0), θ = 123.9° and 90°) for numerous excited states and two-dimensional PESs for the X and ? states up to the dissociation limits are obtained for the first time. The ? (1)A(1), B(1)E-X (1)A(1) transition moments are calculated as well and used together with the PES data for the analysis of possible photodecay channels of arsine in its first absorption band.  相似文献   

2.
xDNA and yDNA are new classes of synthetic nucleic acids characterized by having base-pairs with one of the bases larger than the natural congeners. Here these larger bases are called x- and y-bases. We recently investigated and reported the structural and electronic properties of the x-bases (Fuentes-Cabrera et al. J. Phys. Chem. B 2005, 109, 21135-21139). Here we extend this study by investigating the structure and electronic properties of the y-bases. These studies are framed within our interest that xDNA and yDNA could function as nanowires, for they could have smaller HOMO-LUMO gaps than natural DNA. The limited amount of experimental structural data in these synthetic duplexes makes it necessary to first understand smaller models and, subsequently, to use that information to build larger models. In this paper, we report the results on the chemical and electronic structure of the y-bases. In particular, we predict that the y-bases have smaller HOMO-LUMO gaps than their natural congeners, which is an encouraging result for it indicates that yDNA could have a smaller HOMO-LUMO gap than natural DNA. Also, we predict that the y-bases are less planar than the natural ones. Particularly interesting are our results corresponding to yG. Our studies show that yG is unstable because it is less aromatic and has a Coulombic repulsion that involves the amino group, as compared with a more stable tautomer. However, yG has a very small HOMO-LUMO gap, the smallest of all the size-expanded bases we have considered. The results of this study provide useful information that may allow the synthesis of an yG-mimic that is stable and has a small HOMO-LUMO gap.  相似文献   

3.
Density functional theory calculations (B3LYP and BH&HLYP functionals) of the potential energy surface have been performed to investigate the mechanisms of decalin breakdown, and the Rice-Ramsperger-Kassel-Marcus and transition state theory methods have been used to compute the high-pressure limit thermal rate constants for the new reaction pathways. The new pathways connect decalin to five primary monoaromatic species: benzene, toluene, styrene, ethylbenzene, and xylene. The reactions used for the new routes are carbon-carbon bond cleavage reaction, dissociation reaction, and hydrogen abstraction and addition reactions. A kinetic analysis was performed for pyrolytic conditions, and benzene, toluene, and xylene were identified as major products.  相似文献   

4.
The traditional resonance model for electrophilic attacks on substituted aromatic rings is revisited using high level valence bond (VB) calculations. A large π-donation is found in the X = NH(2) case and a weaker one for the X = Cl case, not only for ortho and para isomers but also for the meta case, which can be explained by considering five (not three) fundamental VB structures. No substantial π-effect is found in the X = NO(2) case, generally viewed as π-attractive.  相似文献   

5.
The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.  相似文献   

6.
We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular-dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for biocompatible devices.  相似文献   

7.
Experimental work has shown that small amounts of HCl strongly enhance electron capture in ice films. The purpose of the present study was to investigate the effect of adsorbed HCl on the interaction of electrons with small clusters of water. Studies were made with clusters of 6 and 12 water molecules with various geometries both with and without one HCl attached. A number of distinct HCl coordination motifs were examined. All of the neutral structures with HCl exhibited zero thresholds for electron attachment and formed dipole bound anionic states (DBS). The relaxation processes for these "initial DBS" depended on the number of H(2)O (n) and on the number and type of H-bonds to the HCl (x). The initial DBS of systems with only O-H...Cl H-binding underwent dissociative electron attachment (DEA), forming H atoms. Relaxation for systems with ClH...OH(2) bonds was more complex. For the two layer n = 12 systems with x = 2 or 3 the HCl proton moved to the nearest oxygen to form H(3)O(+). Then rearrangement of the proton network occurred, and the Cl(-) became solvated by three HO-H...Cl(-) bonds. The presence of Cl(-) and H(3)O(+) increases the dipole moment and the electron binding energy (EBE) of the network. Further stabilization is achieved by decay into deeper DBS electron traps and/or by reaction of the excess electron with H(3)O(+) to form H(*) atoms. The HCl(H(2)O)(6) clusters with a single Cl-H...OH(2) bond behaved differently. They increased their stability by becoming more linear. This raised the dipole moment and the EBE therefore increased, reducing the total energy. None of these species showed any signs of increasing the number of H-bonds to Cl. The implication of these observations for the interpretation of the results of the experiments with 0.2 monolayer of HCl on 5 monolayer of H(2)O at 20 K, and on the possible role of cosmic ray-induced ionization in polar stratospheric clouds in ozone depletion is discussed.  相似文献   

8.
Current rectification effect in an asymmetric molecule HCOO-C6H4-(CH2)n sandwiched between two aluminum electrodes has been studied using an ab initio nonequilibrium Green's function method. The conductance of the system decreases exponentially with the increasing number n of CH2. The phenomenon of current rectification is observed such that a very small current appears at negative bias and a sharp negative differential resistance at a critical positive bias when n>or=2. The rectification effect arises from the asymmetric structure of the molecule and the molecule-electrode couplings. A significant rectification ratio of approximately 38 can be achieved when n=5.  相似文献   

9.
The interaction of the glycine radical on the side walls of both armchair and zigzag single walled carbon nanotubes is investigated by density functional theory. It is found that the interaction potential of the N-centered glycine radical with the tubes has a minimum of 16.9 (armchair) and 20.2 (zigzag) kcal/mol with respect to the dissociation products. In contrast, the C-centered radical, which is 22.7 kcal/mol lower in energy than the N-centered radical, does not form stable complexes with both types of carbon nanotubes.  相似文献   

10.
Energies for the addition of anionic nucleophiles, Z(-), to carbonyl compounds, XYCO, are calculated at the G2(MP2) level of theory. The substituents X, Y, and Z are taken from the set {H, CH3, NH2, OH, F, CF3, CHCH2, CHO, CCH, and CN}. The basicity and, to a lesser extent, ionization potential of Z(-) were found to correlate with the enthalpy of addition of Z(-) to H2CO. The enthalpy of addition of Z(-) to XYCO relative to H2CO is largely independent of Z. The ordering of the enthalpies of addition for the series of XYCO's is rationalized. By using a thermodynamic cycle, the independence of this ordering from Z is attributed to the additivity of the inductive stabilization of XYZCO(-) by X and Y versus H2ZCO(-). A method for estimating the enthalpy of addition for nucleophile/carbonyl combinations not studied above is described and shown to give good results on a model system.  相似文献   

11.
The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of 1,3,5-triazine at different wavelengths of the absorbed photon. Reaction pathways leading to various decomposition products have been mapped out at the G3(MP2,CC)//B3LYP level, and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for the dissociation products have been calculated using the steady-state approach. The results show that, after being excited by 275, 248, or 193 nm photons, the triazine molecule isomerizes to an opened-ring structure on the first singlet excited-state potential energy surface (PES), which is followed by relaxation into the ground electronic state via internal conversion. On the contrary, excitation by 285 and 295 nm photons cannot initiate the ring-opening reaction on the excited-state PES, and the molecule relaxes into the energized ring isomer in the ground electronic state. The dissociation reaction starting from the ring isomer is calculated to have branching ratios of various reaction channels significantly different from those for the reaction initiating from the opened-ring structure. The existence of two distinct mechanisms of 1,3,5-triazine photodissociation can explain the inconsistency in the translational energy distributions of HCN moieties at different wavelengths observed experimentally.  相似文献   

12.
13.
Studies on the catalytic reaction mechanism of L-lactate dehydrogenase have been carried out by using quantum chemical ab initio calculation at HF/6-31G* level. It is found that the interconversion reaction of pyruvate to L-lactate is dominated by the hydride ion HR- transfer, and the transfers of the hydride ion HR and proton HR are a quasi-coupled process, in which the energy barrier of the transition state is about 168.37 kJ/mol. It is shown that the reactant complex is 87.61 kJ/mol lower, in energy, than the product complex. The most striking features in our calculated results are that pyridine ring of the model cofactor is a quasi-boat-like configuration in the transited state, which differs from a planar conformation in some previous semiempirical quantum chemical studies. On the other hand, the similarity in the structure and charge between the HR transfer process and the hydrogen bonding with lower barrier indicates that the HR transfer process occurs by means of an unusual manner. In addition,  相似文献   

14.
The dimers formed by formic acid (FA) and furan are investigated by ab initio methods and matrix isolation spectroscopy. Nine complexes with binding energies between -3.91 and -0.82 kcal/mol (MP2/6-311++G(d,p) + ZPE + BSSE) are identified. Another five weaker bound complexes are localized at lower level of theory only. The binding in the furan-FA dimers can be described in terms of OH...O, C=O...H, HO...H, CH...O, OH...pi, and CH...pi interactions. Therefore, the furan-FA complexes are classified in two types: (1) the dimers where the OH hydrogen of formic acid interacts with the furan molecule and (2) the dimers where the main interactions of FA with the furan molecule are via the less acidic CH hydrogen. Duning's and Pople's triple and double basis sets were used to study the dependence of the geometries and energies of the complexes from the basis set. BSSE (basis set superposition error) counterpoise corrections (CP) were included during the geometry optimizations of all dimers at the MP2/6-31G(d,p) level of theory. Matrix isolation spectroscopy allowed us to record the IR spectrum of aggregates between FA and furan. By comparison of the experimental IR spectrum with calculated IR spectra of a variety of complexes, it was possible to identify the most stable furan-FA dimer as the major product of the aggregation.  相似文献   

15.
Molecular orbital and density functional theory calculations are performed on some di- and tetrasubstituted derivatives of anthraquinone, dihydrophenazine, and acridone to investigate cooperativity in a pair of bifurcated hydrogen bonds occurring in the same molecule. The various structures were selected as convenient model systems for three-center hydrogen bonding of both H...A...H and A...H...A types. In the former type, the C=O moieties in anthraquinone and acridone act as bifurcated hydrogen bond acceptors, and substituted OH groups act as hydrogen bond donors. In the latter type, the N-H moieties in dihydrophenazine, acridones act as bifurcated hydrogen bond donors, and the carbonyl oxygens of substituted CHO groups act as hydrogen bond acceptors. Different indicators of cooperativity reveal that two intramolecular bifurcated hydrogen bonds simultaneously present in the same molecule significantly reinforce each other.  相似文献   

16.
The orientational dependence of the interaction between two C(60) molecules is investigated using ab initio calculations. The binding energy, computed within density functional theory in the local density approximation, is substantially smaller than the one derived from the experimental heat of sublimation of fullerite, which calls into question the nature of inter-C(60) bonding. According to our calculations, the experimentally observed orientation with a C(60) presenting a hexagon-hexagon bond to a pentagonal face of the other C(60) is not really favored. Some other configurations are very close in energy and in fact a pentagon facing a pentagon and a hexagon facing a hexagon-hexagon bond are found to be slightly more favorable situations. Our results are compared to previous ones obtained either with previous empirical intermolecular potentials or to existing ab initio studies of crystalline C(60). In addition, the stacking of C(60) in a crystal and in a decahedral (C(60))(7) cluster is discussed.  相似文献   

17.
Computations on Diels-Alder (DA) reactions of phosphaethene with 1,3-butadiene and with isoprene reveal asynchronous transition structures. The DFT (B3LYP/6-311+G) activation energies of these reactions, 12-14 kcal/mol, are much lower than that of the parent ethene-butadiene reaction, 28 kcal/mol, even though the exothermicities of all lie in the same range, from -29 to -33 kcal/mol. The transition states (TSs) for the phosphethene-butadiene or isoprene DA reactions are earlier than the TSs of the butadiene-ethene cycloaddition. Due to the weakness of the C=P pi bond compared to the C=C pi bonds, the energies required to reach the phosphaethene TSs are much less than the carbocyclic cases. The computed (1)H NMR chemical shifts and nucleus independent chemical shifts (NICS) quantify the aromatic character of the transition states. Regioselectivities of the neutral phosphaethene-isoprene DA reactions are modest, at best. However, computations on radical cation DA reactions of phosphaethene with isoprene, which proceed stepwise with open chain intermediates, can account for the high regioselectivities that have been observed in some cases.  相似文献   

18.
Ab initio calculations are carried out to investigate the conformational stability of a model macrocyle tetraamide. The four amide groups in the selected model are present in the sequence: -(O=CNH)-Ph-(NHC=O)-CH=CH-(O=CNH)-Ph-(NHC=O)-CH=CH-. In this sequence, two phenyl rings and two ethene groups act as bridges between the amide units. Each amide motif bonds to a phenyl ring through its amide nitrogen and to an ethene group through its amide carbon. Four clearly distinct minimum-energy conformations are found upon full geometry optimization using the B3LYP/6-31+G(d) method. Frequency calculations using the same method confirm that the four conformations are indeed minima in the macrocycle potential energy surface. Relative to the most stable conformer, the other conformations are higher in energy by 0.86, 2.09, and 9.17 kcal/mol, respectively, at the MP2/6-31+G(d,p) level. The stability of the macrocycle conformations is correlated primarily to the existence and strength of intramolecular N-H...O=C hydrogen bonds. Additional stability to the conformations is found to come from weak Ph-H...O=C hydrogen bonding between a carbonyl oxygen and a hydrogen atom of a phenyl group. Solvent effects play an important role in the relative energies of the various conformations, as indicated by the simple SCRF = dipole model calculations for the case of aqueous solution.  相似文献   

19.
Ab initio methods were used to shed light on fundamental aspects of the enzymatic mechanism of guanosine triphosphate hydrolysis in the Cdc42/Cdc42GAP complex. The calculations focused on the nucleophilic addition of the catalytic water molecule to the gamma-phosphate phosphorus atom. A large model system was required to correctly reproduce the electrostatic properties on the active site. The model turned out to reproduce most of the electrostatic field of the biological complex at the reactants. Our calculations established the H-bond pattern of the catalytic water (WAT), which turned out to interact with Q61 and T35, in the most stable conformation. This ruled out the possibility that the catalytic water transferred its proton directly to the gamma-phosphate. Furthermore, the calculations suggested that the electronic structure of WAT was very different from that in the bulk. Finally, this study showed that during the reaction, WAT transferred a proton to Gln61, consistent with the available X-ray data on a transition-state analogue/enzyme complex(19) and with the decrease of activity in the Q61E mutant.  相似文献   

20.
 A local-orbital-based ab initio approach to calculate correlation effects on quasi-particle energies in insulating solids is presented. The use of localized Wannier-type Hartree–Fock orbitals allows correlation effects to be efficiently assessed. First a Green's function approach based on exact diagonalization is introduced and this is combined with an incremental scheme, while subsequently different levels of perturbative approximations are derived from the general procedure. With these methods the band structure of LiF is calculated and good agreement with experiment is found. By comparing the different approximations proposed, including the exact diagonalization procedure, their relative quality is established. Received: 25 June 2001 / Accepted: 31 August 2001 / Published online: 19 December 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号