共查询到20条相似文献,搜索用时 15 毫秒
1.
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy ε between the chaperone and the chain and the chaperone concentration N(c) can greatly improve the translocation probability. Particularly, with increasing the chaperone concentration a maximum translocation probability is observed for weak binding. For a fixed chaperone concentration, the histogram of translocation time τ has a transition from a long-tailed distribution to a gaussian distribution with increasing ε. τ rapidly decreases and then almost saturates with increasing binding energy for a short chain; however, it has a minimum for longer chains at a lower chaperone concentration. We also show that τ has a minimum as a function of the chaperone concentration. For different ε, a nonuniversal dependence of τ on the chain length N is also observed. These results can be interpreted by characteristic entropic effects for flexible polymers induced by either the crowding effect from a high chaperone concentration or the intersegmental binding for the high binding energy. 相似文献
2.
Through a detailed Langevin dynamics simulation study, the role of memory effects during unbiased translocation is explored. Tests are devised to uncover the presence of memory effects by directly measuring forward/backward-correlated motion as well as the associated change in the dynamics. Conducting these tests at low and high viscosities, a range of behaviours across different time scales is revealed: short-time forward correlations at all viscosities, quasi-static behaviour at low viscosity, and long-time backward correlations at high viscosity. By applying these tests at different portions of the translocation process, these memory effects are also shown to vary as translocation proceeds. Combining this information with standard measurements, a physical picture of unbiased translocation as the diffusion of a local minimum is proposed. 相似文献
3.
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force F. We observe that the translocation probability initially increases and then saturates with increasing F, independent of φ, which is the average density of the whole chain in the nanocontainer. The translocation time distribution undergoes a transition from a Gaussian distribution to an asymmetric distribution with increasing φ. Moreover, we find a nonuniversal scaling exponent of the translocation time as chain length, depending on φ and F. These results are interpreted by the conformation of the translocated chain in the nanocontainer and the time of an individual segment passing through the pore during translocation. 相似文献
4.
The translocation of a partially charged polymer through a neutral nanopore under external electrical field is studied by using dynamic Monte Carlo method on a simple cubic lattice. One monomer in the polymer is charged and it suffers a driving force when it locates inside the pore. Two time scales, mean first passage time τ(FP) with the first monomer restricted to never draw back into cis side and translocation time τ for polymer continuously threading through nanopore, are calculated. The first passage time τ(FP) decreases with the increase in the driving force f, and the dependence of τ(FP) on the position of charged monomer M is in agreement with the theoretical results using Fokker-Planck equation [A. Mohan, A. B. Kolomeisky, and M. Pasquali, J. Chem. Phys. 128, 125104 (2008)]. But the dependence of τ on M shows a different behavior: It increases with f for M < N/2 with N the polymer length. The novel behavior of τ is explained qualitatively from dynamics of polymer during the translocation process and from the free energy landscape. 相似文献
5.
Nanoparticle electrophoretic translocation through a single nanopore induces a detectable change in the ionic current, which enables the nanopore-based sensing for various bio-analytical applications. In this study, a transient continuum-based model is developed for the first time to investigate the electrokinetic particle translocation through a nanopore by solving the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential and the Navier-Stokes equations for the flow field using an arbitrary Lagrangian-Eulerian (ALE) method. When the applied electric field is relatively low, a current blockade is expected. In addition, the particle could be trapped at the entrance of the nanopore when the electrical double layer (EDL) adjacent to the charged particle is relatively thick. When the electric field imposed is relatively high, the particle can always pass through the nanopore by electrophoresis. However, a current enhancement is predicted if the EDL of the particle is relatively thick. The obtained numerical results qualitatively agree with the existing experimental results. It is also found that the initial orientation of the particle could significantly affect the particle translocation and the ionic current through a nanopore. Furthermore, a relatively high electric field tends to align the particle with its longest axis parallel to the local electric field. However, the particle's initial lateral offset from the centerline of the nanopore acts as a minor effect. 相似文献
6.
Following our previous study of a Gaussian chain translocation, we have investigated the transport of a self-avoiding chain from one sphere to another sphere through a narrow pore, using the self-consistent field theory formalism. The free energy landscape for polymer translocation is significantly modified by excluded volume interactions among monomers. The free energy barrier for the placement of one of the chain ends at the pore depends on the chain length N nonmonotonically, in contrast to the N-independence for Gaussian chains. This results in a nonmonotonic dependence of the average arrival time [tau0] on N for self-avoiding chains. When the polymer chain is partitioned between the donor and recipient spheres, a local free energy minimum develops, depending on the strength w of the excluded volume interaction and the relative sizes of the donor and recipient spheres. If the sizes of spheres are comparable, the average translocation time tau (the average time taken by the polymer, after the arrival at the pore, to convert from the donor to the recipient) increases with an increase in w for a fixed N value. On the other hand, for the highly asymmetric sizes of the donor and recipient spheres, tau decreases with an increase in w. As in the case of Gaussian chains, tau depends nonmonotonically on the pore length. 相似文献
7.
We investigate the voltage-driven translocation of an inhomogeneously charged polymer through a nanopore by utilizing discrete and continuous stochastic models. As a simplified illustration of the effect of charge distribution on translocation, we consider the translocation of a polymer with a single charged site in the presence and absence of interactions between the charge and the pore. We find that the position of the charge that minimizes the translocation time in the absence of pore-polymer interactions is determined by the entropic cost of translocation, with the optimum charge position being at the midpoint of the chain for a rodlike polymer and close to the leading chain end for an ideal chain. The presence of attractive and repulsive pore-charge interactions yields a shift in the optimum charge position toward the trailing end and the leading end of the chain, respectively. Moreover, our results show that strong attractive or repulsive interactions between the charge and the pore lengthen the translocation time relative to translocation through an inert pore. We generalize our results to accommodate the presence of multiple charged sites on the polymer. Our results provide insight into the effect of charge inhomogeneity on protein translocation through biological membranes. 相似文献
8.
We solve the Chapman-Kolmogorov equation and study the exact splitting probabilities of the general stochastic process which describes polymer translocation through membrane pores within the broad class of Markov chains. Transition probabilities, which satisfy a specific balance constraint, provide a refinement of the Chuang-Kantor-Kardar relaxation picture of translocation, allowing us to investigate finite size effects in the evaluation of dynamical scaling exponents. We find that (i) previous Langevin simulation results can be recovered only if corrections to the polymer mobility exponent are taken into account and (ii) the dynamical scaling exponents have a slow approach to their predicted asymptotic values as the polymer's length increases. We also address, along with strong support from additional numerical simulations, a critical discussion which points in a clear way the viability of the Markov chain approach put forward in this work. 相似文献
9.
We investigate the problem of polymer translocation through a nanopore in the absence of an external driving force. To this end, we use the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. To overcome the entropic barrier without artificial restrictions, we consider a polymer which is initially placed in the middle of the pore and study the escape time tau required for the polymer to completely exit the pore on either end. We find numerically that tau scales with the chain length N as tau approximately N(1+2nu), where nu is the Flory exponent. This is the same scaling as predicted for the translocation time of a polymer which passes through the nanopore in one direction only. We examine the interplay between the pore length L and the radius of gyration R(g). For LR(g), we find tau approximately N. In addition, we numerically find the scaling function describing crossover between short and long pores. We also show that tau has a minimum as a function of L for longer chains when the radius of gyration along the pore direction R( parallel) approximately L. Finally, we demonstrate that the stiffness of the polymer does not change the scaling behavior of translocation dynamics for single-segment dynamics. 相似文献
10.
Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Pe?clet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Pe?clet number. We investigate the effect of the chaperone size on the translocation process. In particular, for large chaperone size, the translocation progress and the mean waiting time as function of the reaction coordinate exhibit pronounced sawtooth-shapes. The effects of a heterogeneous polymer sequence on the translocation dynamics is studied in terms of the translocation velocity, the probability distribution for the translocation progress, and the monomer waiting times. 相似文献
11.
The translocation of a polymer chain through a narrow hole in a rigid obstacle has been studied by the static Monte Carlo simulations. A modified self-avoiding walk on a cubic lattice has been used to model the polymer in an athermal solution. The entropy of the chain before, in the course, and after the translocation process has been estimated by the statistical counting method. The thermodynamic generalized forces governing the translocation have been calculated. The influence of the system geometry on the entropic barrier landscape is discussed. 相似文献
12.
We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength E, length of the chain N, and length of the pore L on forced translocation. As our main result, we find a crossover scaling for the translocation time tau with the chain length from tau approximately N2nu for relatively short polymers to tau approximately N1+nu for longer chains, where nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains v approximately N-nu, which crosses over to v approximately N(-1) for long polymers. The reason for this is that with increasing N there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which R parallel, the radius of gyration Rg along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large N, however, the asymptotic scaling tau approximately N1+nu is recovered. In this regime, tau is almost independent of L. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for R parallel approximately L. We show here that this minimum persists for weak fields E such that EL is less than some critical value, but vanishes for large values of EL. 相似文献
13.
We simulated the translocation process of a polymer chain from a source container to a drain container through a short nanochannel. We utilized the bond fluctuation model coupled with Monte Carlo dynamics in our simulations. The calculation results show that the excluded volume effect significantly affects the polymer's translocation time tau. This time depends nonmonotonically on the polymer length N. For a fixed nanochannel length, tau decreases when the polymer length increases. tau, however, increases when the polymer length exceeds a certain threshold. This observation differs from those predicated for a Gaussian chain. In this paper, we will further present our findings to explain this phenomenon. The knowledge we gain from this research can enhance the understanding of complex transport processes in many biological systems. 相似文献
14.
Matsuyama A 《The Journal of chemical physics》2004,121(16):8098-8103
We theoretically study kinetics of a polymer threading through a pore embedded in a flat membrane. We numerically solve three coupled kinetic equations for the number n(1) of polymer segments in one side of the membrane and expansion factors of the polymer chain in each side of the membrane. We find the time evolution n(1) proportional to t(1/(1+nu)) at late stages and the translocation time tau(t) is scaled as tau(t) proportional to 1+nu) for large number n of the polymer segments, where nu is the effective size exponent of the radius of gyration of the polymer. When the polymer is translocated into a region with a good solvent condition (nu=3/5), we obtain n(1) proportional to t(5/8) and tau(t) proportional to n(8/5). 相似文献
15.
Noting the limitations of the standard characterization of translocation dynamics, an incremental mean first passage process methodology is used to more completely map the unbiased translocation of a polymer through a nanopore. In this approach, the average time t(0) required to reach successively increasing displacements for the first time is recorded - a measure shown to be more commensurate with the mean first passage nature of translocation. Applying this methodology to the results of Langevin dynamics simulations performed in three dimensions across a range of viscosities, a rich set of dynamics spanning regular diffusion at low viscosities to sub-diffusion at higher viscosities is revealed. Further, while the scaling of the net translocation time τ with polymer length N is shown to be viscosity-dependent, common regimes are found across all viscosities: super-diffusive behaviour at short times, an N-independent backbone consistent with τ ~ N(2.0) at low viscosities and τ ~ N(2.2) at higher viscosities for intermediate times, and N-dependent deviations from the backbone near the completion of translocation. 相似文献
16.
Dynamic Monte Carlo simulation of a bead-spring model of flexible macromolecules threading through a very narrow pore in a very thin rigid membrane are presented, assuming at the cis side of the membrane a purely repulsive monomer-wall interaction, while the trans side is attractive. Two choices of monomer-wall attraction epsilon are considered, one choice is slightly below and the other slightly above the "mushroom to pancake" adsorption threshold epsilon(c) for an infinitely long chain. Studying chain lengths N=32, 64, 128, and 256 and varying the number of monomers N(trans) (time t=0) that have already passed the pore when the simulation started, over a wide range, we find for epsilonepsilon(c) a finite number N(trans)(t=0) suffices that the translocation probability is close to unity. In the case epsilonepsilon(c), we find that the translocation time scales as tau proportional, variant N(1.65+/-0.08). We suggest a tentative scaling explanation for this result. Also the distribution of translocation times is obtained and discussed. 相似文献
17.
Identification of nucleotides by measuring their current during DNA translocation through a nanopore
A. A. Kletsov K. I. Kosolapova A. S. Chumakov V. A. Glukhova A. I. Mikhailov E. G. Glukhovskoi 《Russian Chemical Bulletin》2015,64(10):2325-2329
The electrical current through nucleotide junctions (guanine [G], cytosine [C], adenine [A], and thymine [T] bases sandwiched between Ag atoms) was calculated using the electron propagator theory (Keldysh–Green function formalism). The magnitudes of the calculated currents change in the following hierarchy: I A > I G > I C > I T. The difference in the current magnitudes implies the possibility of nucleotide identification by measuring the current they conduct during DNA translocation through a nanopore. 相似文献
18.
The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation. 相似文献
19.
The driven translocation kinetics of a single strand polynucleotide chain through a nanopore is studied using off-lattice Monte Carlo simulations, by which the authors demonstrate a novel method in controlling the driven polymer transport through a nanopore by a rotating electric field. The recorded time series of blockade current from the driven polynucleotide transport are used to determine the sequence of polynucleotides by implementing a modified Monte Carlo algorithm, in which the energy landscape paving technique is incorporated to avoid trapping at deep local minima. It is found that only six-time series of block current are required to completely determine the polynucleotide sequence if the average missing rate (AMR) of current signals in these time series is smaller than 20%. For those time series with AMR greater than 20%, the error rate in sequencing an unknown polynucleotide decreases rapidly by increasing the number of time series. To find the most appropriate experimental conditions, the authors have investigated the dependence of AMR of current signals and qualified rate of measured time series of blockade current on various controllable experimental variables. 相似文献