首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two echolocation experiments are described. They were conducted on the same harbor porpoise housed in a sea pen, one year apart at Neeltje Jans, The Netherlands. The aims were to determine the target detection ability of an echolocating harbor porpoise, with the ultimate goal to predict the distance at which harbor porpoises can detect fishing nets. In experiment 1, the maximum distance at which the 3-year-old porpoise could detect a 7.62-cm diameter water-filled stainless-steel sphere by echolocation was determined psychophysically. The 50%-current detection threshold was reached when the sphere was at a distance of 26 m from the porpoise's rostrum. In experiment 2, conducted a year later, the maximum detection distance for a 5.08-cm water-filled stainless-steel sphere was 15.9 m. The target strengths of both targets were measured using simulated harbor porpoise echolocation signals and the results, coupled with transmission-loss calculations, indicated that the echo levels received by the porpoise with the targets at the threshold ranges in the two experiments were only 1.3 dB apart. Together with information on the target strengths of various fishing nets, the results of the present study can be used to predict the distance at which the nets can be detected by harbor porpoises.  相似文献   

2.
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.  相似文献   

3.
An experiment was conducted to determine the ability of an echolocating Atlantic bottlenose dolphin (Tursiops truncatus) to detect targets in the presence of reverberation. Reverberation was induced by a clutter screen consisting of forty-eight 5.1-cm-diam cork spheres spaced 15.2 cm apart and arranged in a rectangular array, located behind the targets. Hollow aluminum cylinders having the same outer diameter and wall thickness and three different lengths were used as targets. The dolphin was trained to station in a hoop, 6 m from the targets, and to echolocate the target upon the reception of an audio cue. Only one of the targets would be presented in a target-present trial. Data were collected on the animal's detection performance as a function of the separation distance between the clutter screen and the targets. The animal's performance for the smallest cylinder varied from 91% to 55% correct as the separation distance decreased from 10.2 to 0 cm. The target strength of the clutter screen and the cylinders were measured both in terms of the energies and the maximum peak-to-peak amplitudes of the incident and reflected echoes. These measurements indicated that when the target-clutter screen separation distance was 0 cm, the dolphin's 50% correct detection occurred at an energy echo-to-reverberation ratio of approximately 0.25 dB and at peak-to-peak echo-to-reverberation ratio of 2.6 dB. The results also indicated that the dolphin's performance varied almost linearly with the echo-to-reverberation ratio. The animal's pulse emissions were monitored by a microprocessor system and the results are presented in terms of the average number of clicks and the average response latency, as a function of the separation distance.  相似文献   

4.
The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.  相似文献   

5.
Bottlenose dolphins (Tursiops truncatus) detect and discriminate underwater objects by interrogating the environment with their native echolocation capabilities. Study of dolphins' ability to detect complex (multihighlight) signals in noise suggest echolocation object detection using an approximate 265-micros energy integration time window sensitive to the echo region of highest energy or containing the highlight with highest energy. Backscatter from many real objects contains multiple highlights, distributed over multiple integration windows and with varying amplitude relationships. This study used synthetic echoes with complex highlight structures to test whether high-amplitude initial highlights would interfere with discrimination of low-amplitude trailing highlights. A dolphin was trained to discriminate two-highlight synthetic echoes using differences in the center frequencies of the second highlights. The energy ratio (delta dB) and the timing relationship (delta T) between the first and second highlights were manipulated. An iso-sensitivity function was derived using a factorial design testing delta dB at -10, -15, -20, and -25 dB and delta T at 10, 20, 40, and 80 micros. The results suggest that the animal processed multiple echo highlights as separable analyzable features in the discrimination task, perhaps perceived through differences in spectral rippling across the duration of the echoes.  相似文献   

6.
Bottlenose dolphins (Tursiops truncatus) have an acute ability to use target echoes to judge attributes such as size, shape, and material composition. Most target recognition studies have focused on features associated with individual echoes as opposed to information conveyed across echo sequences (feature envelope of the multi-echo train). One feature of aspect-dependent targets is an amplitude modulation (AM) across the return echoes in the echo train created by relative movement of the target and dolphin. The current study examined whether dolphins could discriminate targets with different AM envelopes. "Electronic echoes" triggered by a dolphin's outgoing echolocation clicks were manipulated to create sinusoidal envelopes with varying AM rate and depth. Echo trains were equated for energy, requiring the dolphin to extract and retain information from multiple echoes in order to detect and report the presence of AM. The dolphin discriminated amplitude-modulated echo trains from those that were not modulated. AM depth thresholds were approximately 0.8 dB, similar to other published amplitude limens. Decreasing the rate of modulation from approximately 16 to 2 cycles per second did not affect the dolphin's AM depth sensitivity. The results support multiple-echo processing in bottlenose dolphin echolocation. This capability provides additional theoretical justification for exploring synthetic aperture sonar concepts in models of animal echolocation that potentially support theories postulating formation of images as an ultimate means for target identification.  相似文献   

7.
8.
Maintenance work on the harbor of Setu?bal, in Portugal, required the removal of a 14-m deep rocky outcrop at the ship maneuver area, using about 35 kg of Gelamonite, a nitroglycerin-based high-explosive. This important harbor is located in the Sado estuary, a biologically rich environment and an important feeding area for a resident community of bottlenose dolphins. Using different safe range calculation models, a mitigation and monitoring plan was developed that minimized the risks of these underwater explosions for the dolphins. At our monitoring station, at 2 km from the demolition site, acoustic pressure levels in excess of 170 dB re 1 μPa (root-mean-square) were measured. Samples of dead fish collected at the site were indicative of shock trauma from the blasts.  相似文献   

9.
针对圈养条件下瓶鼻海豚通讯信号(whistle)分类时混叠大量回声定位信号(click)导致分类正确率降低的问题,提出了一种基于机器学习的融合分类方法。分别提取whistle信号的时频分布特征训练随机森林分类器,梅尔时频图特征训练卷积神经网络分类器,在此基础上设计融合判决器对混叠whistle信号进行分类识别。对圈养海豚声信号采集实验数据的分类识别结果表明,融合分类方法具有更好的分类性能,对混叠whistle信号分类正确率大于94%,优于时频分布特征分类器和梅尔时频图特征分类器,能够提高混叠信号的分类能力。  相似文献   

10.
For improving the classification accuracy of bottlenose dolphin communication signals(whistle) under captive conditions when overlapping echolocation signals(click),a fusion classification method based on machine learning is proposed.The time-frequency distribution features of whistle signals are extracted to train the random forest classifier,and the Mel timefrequency diagram features are used to train the convolution neural network classifier.On this basis,a fusion decision-maker is designed t...  相似文献   

11.
A key component in the operation of a biosonar system is the radiation of sound energy from the sound producing head structures of toothed whales and microbats. The current view involves a fixed transmission aperture by which the beam width can only change via changes in the frequency of radiated clicks. To test that for a porpoise, echolocation clicks were recorded with high angular resolution using a 16 hydrophone array. The beam is narrower than previously reported (DI = 24 dB) and slightly dorso-ventrally compressed (horizontal -3 dB beam width: 13°, vertical -3 dB beam width: 11°). The narrow beam indicates that all smaller toothed whales investigated so far have surprisingly similar beam widths across taxa and habitats. Obtaining high directionality may thus be at least in part an evolutionary factor that led to high centroid frequencies in a group of smaller toothed whales emitting narrow band high frequency clicks. Despite the production of stereotyped narrow band high frequency clicks, changes in the directionality by a few degrees were observed, showing that porpoises can obtain changes in sound radiation.  相似文献   

12.
Monitoring abundance and population trends of small odontocetes is notoriously difficult and labor intensive. There is a need to develop alternative methods to the traditional visual line transect surveys, especially for low density areas. Here, the prospect of obtaining robust density estimates for porpoises by passive acoustic monitoring (PAM) is demonstrated by combining rigorous application of methods adapted from distance sampling to PAM. Acoustic dataloggers (T-PODs) were deployed in an area where harbor porpoises concurrently were tracked visually. Probability of detection was estimated in a mark-recapture approach, where a visual sighting constituted a "mark" and a simultaneous acoustic detection a "recapture." As a distance could be assigned to each visual observation, a detection function was estimated. Effective detection radius of T-PODs ranged from 22 to 104 m depending on T-POD type, T-POD sensitivity, train classification settings, and snapshot duration. The T-POD density estimates corresponded to the visual densities derived concurrently for the same period. With more dataloggers, located according to a systematic design, density estimates would be obtainable for a larger area. This provides a method suitable for monitoring in areas with densities too low for visual surveys to be practically feasible, e.g., the endangered harbor porpoise population in the Baltic.  相似文献   

13.
Recently, automated porpoise-click-detectors (T-PODs, Chelonia-Marine-Research) have been used intensively in monitoring harbor porpoises (Phocoena phocoena) in the wild. However, the automated click-detection-mechanism of the T-POD leads to questions on the characteristics of the detection process. We undertook experiments with six captive harbor porpoises (four subadult males in one pool, two adult males in another) at the Dolfinarium Harderwijk (Netherlands). One T-POD was placed for over a week in each pool, while the behavior of the porpoises was logged by visual observation. Data were analyzed using the T-POD software. A total of 725 431 clicks in 30 090 trains were recorded with 32% of the trains classified as CET HI, 27% as CET LO, and 41% as DOUBTFUL. All three train classes differed significantly in all parameters, except for click duration. We conclude that T-PODs perform generally well in detecting click trains of harbor porpoises but that in any future study trains classified as being of lower probability should be investigated very carefully to avoid the risk of losing valuable information.  相似文献   

14.
Variable stimulus presentation methods are used in auditory evoked potential (AEP) estimates of cetacean hearing sensitivity, each of which might affect stimulus reception and hearing threshold estimates. This study quantifies differences in underwater hearing thresholds obtained by AEP and behavioral means. For AEP estimates, a transducer embedded in a suction cup (jawphone) was coupled to the dolphin's lower jaw for stimulus presentation. Underwater AEP thresholds were obtained for three dolphins in San Diego Bay and for one dolphin in a quiet pool. Thresholds were estimated from the envelope following response at carrier frequencies ranging from 10 to 150 kHz. One animal, with an atypical audiogram, demonstrated significantly greater hearing loss in the right ear than in the left. Across test conditions, the range and average difference between AEP and behavioral threshold estimates were consistent with published comparisons between underwater behavioral and in-air AEP thresholds. AEP thresholds for one animal obtained in-air and in a quiet pool demonstrated a range of differences of -10 to 9 dB (mean = 3 dB). Results suggest that for the frequencies tested, the presentation of sound stimuli through a jawphone, underwater and in-air, results in acceptable differences to AEP threshold estimates.  相似文献   

15.
This study documents the changes in peak frequency, source level, and spectrum shape of echolocation clicks made by the same dolphin performing the same discrimination task in 1998 and in 2003/2004 with spherical solid stainless steel and brass targets. The total average peak frequency used in 1998 was 138 kHz but in 2003/2004 it had shifted down nearly 3.5 octaves to 40 kHz. The total average source level also shifted down from 206 dB in 1998 to 187 kHz in 2003/2004. The standard deviation of these parameter values within time periods was small indicating a consistent difference between time periods. The average parameter values for clicks used when exposed to brass versus steel targets were very similar indicating that target type did not greatly influence the dolphin's average echolocation behavior. The spectrum shapes of the average clicks used in 1998 and in 2003/2004 were nearly mirror images of each other with the peak energy in 2003/2004 being concentrated where the 1998 clicks had the lowest energy content and vice versa. Despite the dramatic differences in click frequency content the dolphin was able to perform the same discrimination task at nearly the same level of success.  相似文献   

16.
The Indian Ocean and Atlantic bottlenose dolphins (Tursiops aduncus and Tursiops truncatus) are among the best studied echolocating toothed whales. However, almost all echolocation studies on bottlenose dolphins have been made with captive animals, and the echolocation signals of free-ranging animals have not been quantified. Here, biosonar source parameters from wild T. aduncus and T. truncatus were measured with linear three- and four-hydrophone arrays in four geographic locations. The two species had similar source parameters, with source levels of 177-228 dB re 1 μPa peak to peak, click durations of 8-72 μs, centroid frequencies of 33-109 kHz and rms bandwidths between 23 and 54 kHz. T. aduncus clicks had a higher frequency emphasis than T. truncatus. The transmission directionality index was up to 3 dB higher for T. aduncus (29 dB) as compared to T. truncatus (26 dB). The high directionality of T. aduncus does not appear to be only a physical consequence of a higher frequency emphasis in clicks, but may also be caused by differences in the internal properties of the sound production system.  相似文献   

17.
The sensitivity of the echolocating bat, Eptesicus fuscus, for detection of a sonar target is impaired by the presence of additional targets located at similar distances. At a range of 54 cm, sensitivity to one target declines if the range separation to other targets is smaller than 8-9 cm. This loss of sensitivity is an example of clutter interference along the range axis, created by simultaneous masking of one set of echoes by another. Echoes that fall within an experimentally defined critical range band may sum together to contribute collectively to detection in that band. Echoes falling into separate bands may be detected independently. Acoustic glints within a band appear to be grouped together to be perceived as a single range-extended target of complex structure. Range bands may thus define what a "target" is by specifying within-target and between-target differences in range. The width of critical range bands appears to depend upon target range, with wider bands at greater ranges.  相似文献   

18.
The echolocation detection capabilities of a beluga (Delphinapterus leucas) and an Atlantic bottlenose dolphin (Tursiops truncatus) were directly compared in a target detection experiment. Both animals were trained to detect targets in the presence of masking noise. Targets were stainless-steel, water-filled spheres 7.62 and 22.86 cm in diameter. Target ranges of 16.5 and 40 m were used with the 7.62-cm sphere and 80 m with the 22.86-cm sphere. Masking noise with a flat spectrum from 40-160 kHz was projected from a spherical transducer placed 4 or 5 m, depending on the target distance, from the animal hoop station in line with the target. Target detection performance was determined as a function of masking noise level at each target range. The echo-to-noise ratio (Ee/No)max for the beluga at the 75% correct response threshold was approximately 1.0 dB compared to about 10 dB for the dolphin. The differences of each animal's detection performance across the three ranges were consistent with target strength and transmission loss differences. It is speculated that the difference in performance between the two species may be due to differences in critical bandwidth, signal processing capability, or echolocation strategy.  相似文献   

19.
Echolocating dolphins extract object feature information from the acoustic parameters of echoes. To gain insight into which acoustic parameters are important for object discrimination, human listeners were presented with echoes from objects used in two discrimination tasks performed by dolphins: Hollow cylinders with varying wall thicknesses (+/-0.2, 0.3, 0.4, and 0.8 mm), and spheres made of different materials (steel, aluminum, brass, nylon, and glass). The human listeners performed as well or better than the dolphins at the task of discriminating between the standard object and the comparison objects on both the cylinders (humans=97.1%; dolphin=82.3%) and the spheres (humans= 86.6%; dolphin= 88.7%). The human listeners reported using primarily pitch and duration to discriminate among the cylinders, and pitch and timbre to discriminate among the spheres. Dolphins may use some of the same echo features as the humans to discriminate among objects varying in material or structure. Human listening studies can be used to quickly identify salient combinations of echo features that permit object discrimination, which can then be used to generate hypotheses that can be tested using dolphins as subjects.  相似文献   

20.
Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号