首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cycles through specified vertices of a graph   总被引:1,自引:0,他引:1  
We prove that ifS is a set ofk−1 vertices in ak-connected graphG, then the cycles throughS generate the cycle space ofG. Moreover, whenk≧3, each cycle ofG can be expressed as the sum of an odd number of cycles throughS. On the other hand, ifS is a set ofk vertices, these conclusions do not necessarily hold, and we characterize the exceptional cases. As corollaries, we establish the existence of odd and even cycles through specified vertices and deduce the existence of long odd and even cycles in graphs of high connectivity.  相似文献   

2.
D. Peleg  E. Upfal 《Combinatorica》1989,9(3):289-313
In a typical parallel or distributed computation model processors are connected by a spars interconnection network. To establish open-line communication between pairs of processors that wish to communicate interactively, a set of disjoint paths has to be constructed on the network. Since communication needs vary in time, paths have to be dynamically constructed and destroyed.We study the complexity of constructing disjoint paths between given pairs of vertices on expander interconnection graphs. These graphs have been shown before to possess desirable properties for other communication tasks.We present a sufficient condition for the existence ofKn Q edge-disjoint paths connecting any set ofK pairs of vertices on an expander graph, wheren is the number of vertices and<1 is some constant. We then show that the computational problem of constructing these paths lies in the classes Deterministic-P and Random-P C.Furthermore, we show that the set of paths can be constructed in probabilistic polylog time in the parallel-distributed model of computation, in which then participating processors reside in the nodes of the communication graph and all communication is done through edges of the graph. Thus, the disjoint paths are constructed in the very computation model that uses them.Finally, we show how to apply variants of our parallel algorithms to find sets ofvertex-disjoint paths when certain conditions are satisfied.Supported in part by a Weizmann fellowship and by contract ONR N00014-85-C-0731.  相似文献   

3.
It was proved ([5], [6]) that ifG is ann-vertex-connected graph then for any vertex sequencev 1, ...,v n V(G) and for any sequence of positive integersk 1, ...,k n such thatk 1+...+k n =|V(G)|, there exists ann-partition ofV(G) such that this partition separates the verticesv 1, ...,v(n), and the class of the partition containingv i induces a connected subgraph consisting ofk i vertices, fori=1, 2, ...,n. Now fix the integersk 1, ...,k n . In this paper we study what can we say about the vertex-connectivity ofG if there exists such a partition ofV(G) for any sequence of verticesv 1, ...,v n V(G). We find some interesting cases when the existence of such partitions implies then-vertex-connectivity ofG, in the other cases we give sharp lower bounds for the vertex-connectivity ofG.  相似文献   

4.
We shall consider graphs (hypergraphs) without loops and multiple edges. Let ? be a family of so called prohibited graphs and ex (n, ?) denote the maximum number of edges (hyperedges) a graph (hypergraph) onn vertices can have without containing subgraphs from ?. A graph (hyper-graph) will be called supersaturated if it has more edges than ex (n, ?). IfG hasn vertices and ex (n, ?)+k edges (hyperedges), then it always contains prohibited subgraphs. The basic question investigated here is: At least how many copies ofL ε ? must occur in a graphG n onn vertices with ex (n, ?)+k edges (hyperedges)?  相似文献   

5.
The aim of this paper is to show that the minimum Hadwiger number of graphs with average degreek isO(k/√logk). Specially, it follows that Hadwiger’s conjecture is true for almost all graphs withn vertices, furthermore ifk is large enough then for almost all graphs withn vertices andnk edges.  相似文献   

6.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

7.
A graphG isk-critical if it has chromatic numberk, but every proper subgraph of it is (k?1)-colorable. This paper is devoted to investigating the following question: for givenk andn, what is the minimal number of edges in ak-critical graph onn vertices, with possibly some additional restrictions imposed? Our main result is that for everyk≥4 andn>k this number is at least $\left( {\frac{{k - 1}}{2} + \frac{{k - 3}}{{2(k^2 - 2k - 1)}}} \right)n$ , thus improving a result of Gallai from 1963. We discuss also the upper bounds on the minimal number of edges ink-critical graphs and provide some constructions of sparsek-critical graphs. A few applications of the results to Ramsey-type problems and problems about random graphs are described.  相似文献   

8.
For each positive integerk, we consider the setA k of all ordered pairs [a, b] such that in everyk-graph withn vertices andm edges some set of at mostam+bn vertices meets all the edges. We show that eachA k withk2 has infinitely many extreme points and conjecture that, for every positive , it has only finitely many extreme points [a, b] witha. With the extreme points ordered by the first coordinate, we identify the last two extreme points of everyA k , identify the last three extreme points ofA 3, and describeA 2 completely. A by-product of our arguments is a new algorithmic proof of Turán's theorem.  相似文献   

9.
In this paper, we consider the following problem: of all tricyclic graphs or trees of order n with k pendant vertices (n,k fixed), which achieves the maximal signless Laplacian spectral radius?We determine the graph with the largest signless Laplacian spectral radius among all tricyclic graphs with n vertices and k pendant vertices. Then we show that the maximal signless Laplacian spectral radius among all trees of order n with k pendant vertices is obtained uniquely at Tn,k, where Tn,k is a tree obtained from a star K1,k and k paths of almost equal lengths by joining each pendant vertex to one end-vertex of one path. We also discuss the signless Laplacian spectral radius of Tn,k and give some results.  相似文献   

10.
Given a function f : ℕ→ℝ, call an n-vertex graph f-connected if separating off k vertices requires the deletion of at least f(k) vertices whenever k≤(nf(k))/2. This is a common generalization of vertex connectivity (when f is constant) and expansion (when f is linear). We show that an f-connected graph contains a cycle of length linear in n if f is any linear function, contains a 1-factor and a 2-factor if f(k)≥2k+1, and contains a Hamilton cycle if f(k)≥2(k+1)2. We conjecture that linear growth of f suffices to imply hamiltonicity.  相似文献   

11.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

12.
Recently, various authors have obtained results about the existence of long cycles in graphs with a given minimum degreed. We extend these results to the case where only some of the vertices are known to have degree at leastd, and we want to find a cycle through as many of these vertices as possible. IfG is a graph onn vertices andW is a set ofw vertices of degree at leastd, we prove that there is a cycle through at least vertices ofW. We also find the extremal graphs for this property.Research supported in part by NSF Grant DMS 8806097  相似文献   

13.
We give a simple proof that everyk-connected bipartite tournament has a cycle through every set ofk vertices. This was conjectured in [4].This research was done while the first author was visiting Laboratoire de Recherche en Informatique, universite Paris-Sud whose hospitality and financial support is gratefully acknowledged  相似文献   

14.
We give various characterizations ofk-vertex connected graphs by geometric, algebraic, and physical properties. As an example, a graphG isk-connected if and only if, specifying anyk vertices ofG, the vertices ofG can be represented by points of k–1 so that nok are on a hyper-plane and each vertex is in the convex hull of its neighbors, except for thek specified vertices. The proof of this theorem appeals to physics. The embedding is found by letting the edges of the graph behave like ideal springs and letting its vertices settle in equilibrium.As an algorithmic application of our results we give probabilistic (Monte-Carlo and Las Vegas) algorithms for computing the connectivity of a graph. Our algorithms are faster than the best known (deterministic) connectivity algorithms for allkn, and for very dense graphs the Monte Carlo algorithm is faster by a linear factor.  相似文献   

15.
Letf(n) denote the minimal number of edges of a 3-uniform hypergraphG=(V, E) onn vertices such that for every quadrupleYV there existsYeE. Turán conjectured thatf(3k)=k(k−1)(2k−1). We prove that if Turán’s conjecture is correct then there exist at least 2 k−2 non-isomorphic extremal hypergraphs on 3k vertices.  相似文献   

16.
Lovász, Saks, and Trotter showed that there exists an on-line algorithm which will color any on-linek-colorable graph onn vertices withO(nlog(2k–3) n/log(2k–4) n) colors. Vishwanathan showed that at least (log k–1 n/k k ) colors are needed. While these remain the best known bounds, they give a distressingly weak approximation of the number of colors required. In this article we study the case of perfect graphs. We prove that there exists an on-line algorithm which will color any on-linek-colorable perfect graph onn vertices withn 10k/loglogn colors and that Vishwanathan's techniques can be slightly modified to show that his lower bound also holds for perfect graphs. This suggests that Vishwanathan's lower bound is far from tight in the general case.Research partially supported by Office of Naval Research grant N00014-90-J-1206.  相似文献   

17.
LetG be a digraph, and letk1, such that no fractional packing of directed circuits ofG has value >k, when every vertex is given capacity 1. We prove there is a set ofO (k logk logk) vertices meeting all directed circuits ofG.  相似文献   

18.
L. Pyber 《Combinatorica》1985,5(4):347-349
Every graph onn vertices, with at leastc k n logn edges contains ak-regular subgraph. This answers a question of Erdős and Sauer.  相似文献   

19.
Tibor Gallai made the following conjecture. LetG be ak-chromatic colour-critical graph. LetL denote the set of those vertices ofG having valencyk−1 and letH be the rest ofV(G). Then the number of components induced byL is not less than the number of components induced byH, providedL ≠ 0. We prove this conjecture in a slightly generalized form. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

20.
Consider a complete graph on n vertices with edge weights chosen randomly and independently from an exponential distribution with parameter 1. Fix k vertices and consider the minimum weight Steiner tree which contains these vertices. We prove that with high probability the weight of this tree is (1+o(1))(k-1)(log n-log k)/n when k =o(n) and n.* Research supported in part by NSF grant DSM9971788 Research supported in part by NSF grants DMS-0106589, CCR-9987845 and by the State of New Jersey. Part of this research was done while visiting IBM T. J. Watson Research Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号