首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work presented in this paper details the implementation of a new technique for the measurement of local burning velocity using asynchronous particle image velocimetry. This technique uses the local flow velocity ahead of the flame front to measure the movement of the flame by the surrounding fluid. This information is then used to quantify the local burning velocity by taking into account the translation of the flame via convection. In this paper the developed technique is used to study the interaction between a flame front and a single toroidal vortex for the case of premixed stoichiometric methane and air combustion. This data is then used to assess the impact of vortex structure on flame propagation rates. The burning velocity data demonstrates that there is a significant enhancement to the rate of flame propagation where the flame directly interacts with the rotating vortex. The increases found were significantly higher than expected but are supported by burning velocities (Filatyev et al, Combust Flame 141:1?C21, 2005; Kobayashi et al, Proc Combust Inst 29:1793?C1800, 2002; Shepherd et al. 1998) found in turbulent flames of the same mixture composition. Away from this interaction with the main vortex core, the flame exhibits propagation rates around the value recorded in literature for unperturbed laminar combustion (Tahtouh et al, Combust Flame 159:1735?C1743, 2009; Hassan et al, Combust Flame 115:539?C550, 1998); Halter et al, Proc Combust Inst 30:201?C208, 2005; Coppens et al, Exp Therm Fluid Sci 31:437?C444, 2007).  相似文献   

2.
PIV and photographic recording are used to measure the velocity of the fresh gas and the shape of the reaction layer in a region around the tip of a methane-air Bunsen flame attached to a cylindrical burner. The results compare well with numerical simulations carried out with an infinite activation energy reaction model. The experimental and numerical results confirm that the well-known linear relation between flame velocity and flame stretch derived from asymptotic theory for weakly curved and strained flames is valid for small and moderate values of the flame stretch if the modified definition of stretch introduced by Echekki and Mungal (Proc Combust Inst 23:455?C461, 1990) and Poinsot et al. (Combust Sci Technol 81:45?C73, 1992) is used. However, the relation between flame velocity and modified stretch ceases to be linear and approaches a square root law for large values of the stretch, when the curvature of the flame tip becomes large compared to the inverse of the thickness of a planar flame.  相似文献   

3.
A major issue for the simulation of two-phase flows in engines concerns the modeling of the liquid disperse phase, either in the Lagrangian or the Eulerian approach. In the perspective of massively parallel computing, the Eulerian approach seems to be more suitable, as it uses the same algorithms as the gaseous phase solver. However taking into account the whole physics of a turbulent spray, especially in terms of polydispersity, requires an additional modeling effort. The Mesoscopic Eulerian Formalism (MEF) [13] accounts for the effect of turbulence on the disperse phase, and was extended to the Large Eddy Simulation framework [41], but is limited to monodisperse flows. In [38], the influence of polydispersity on resolved and unresolved turbulent motions of the disperse phase was highlighted, and a first model was proposed, based on size-conditioned statistics. Starting from this idea, a coupling between the MEF and the Multifluid Approach (MA) [30] is proposed. The MA decomposes the Eulerian phase into several fluid classes called sections, and corresponding to size intervals. Each section uses then size-conditioned closures. The original idea of this work is to use the MEF closures independently in each section, taking into account the mean droplet size of this section. This new approach, called Multifluid Mesoscopic Eulerian Formalism (MMEF), is then able to capture polydispersion with associated size-conditioned turbulent dynamics. First, the importance of polydispersity and the ability of MMEF to capture it are highlighted with a 0D evaporation case and a 2D vortex case, showing its impact on dynamics in both size and physical spaces. Then, the MMEF is applied to the MERCATO configuration of ONERA [18]. Results are compared to monodisperse Eulerian, Lagrangian and experimental results.  相似文献   

4.
This paper aims at investigating the detailed structure of turbulent non-reacting dilute spray flows using advanced laser diagnostics. A simple spray jet nozzle is designed to produce a two-phase slender shear flow in a co-flowing air stream with well-defined boundary conditions. The carrier flow is made intentionally simple and easy to model so that the focus can be placed on the important aspects of droplet dispersion and evaporation, as well as turbulence–droplet interactions. Phase Doppler interferometry is employed to record droplet quantities, while planar laser-induced fluorescence imaging is applied separately to obtain acetone vapour data. Measurements are conducted for four acetone spray jets in air at several axial stations starting from the nozzle exit. The combined liquid and vapour mass fluxes of acetone integrated across the jet at downstream locations agree satisfactorily with the total mass flow rate of acetone injected.  相似文献   

5.
The objective of this work is twofold. Firstly, the effects of turbulence intensity variations on the turbulent droplet dispersion, vaporization and mixing for non-reacting sprays (with and without swirl) are pointed out. Secondly, the effects of the coupling of the turbulence modulation with external parameters, such as swirl intensity, on turbulent spray combustion are analyzed in configurations of engineering importance. This is achieved by using advanced models for turbulence, evaporation and turbulence modulation implemented into FASTEST-LAG3D-codes: (1) To highlight the influence of turbulence modulation on some spray properties, a thermodynamically consistent modulation model has been considered besides the standard assumption and the well known Crowe's model. For turbulent droplet dispersion, we rely on the Markov-sequence formulation. (2) In order to characterize phase transition processes ongoing on droplets surfaces, a non-equilibrium evaporation model shows better agreement with experiments in comparison with the quasi-equilibrium-based evaporation models often used. (3) The results of turbulence intensity variations reveal the existence of a limited range out of which the increase or decrease of the turbulence intensity affects no more the efficiency of the heat and mass transfer. A derived characteristic number, a vaporization Damkhöler number, possesses a critical value which separates two different behavior regimes with respect to the turbulence/droplet vaporization interactions. (4) Under reacting conditions, it is shown how the evaporation characteristics, mixing rate and combustion process are strongly influenced by swirl intensity and turbulence modulation. In particular, the turbulence modulation modifies the evaporation rate, which in turn influences the mixing and the species concentration distribution. In the case under investigation, it is demonstrated that this effect cannot be neglected for low swirl intensities (Sw.Nu. ≤ 1) in the region far from the nozzle, and close to the nozzle for high swirl number intensities. In providing these particular characteristics, a reliable control of the mixing of gaseous fuel and air in evaporating and reacting sprays, and a possible optimization of the mixing process can tentatively be achieved.  相似文献   

6.
Based on two large-eddy simulations (LES) of a non-reacting turbulent round jet with a nozzle based Reynolds number of 8,610 with the same configuration as the one that has recently been investigated experimentally (Gampert et al., 2012; J Fluid Mech, 2012; J Fluid Mech 724:337, 2013), we examine the scalar turbulent/non-turbulent (T/NT) interface layer in the mixture fraction field of the jet flow between ten and thirty nozzle diameters downstream. To this end, the LES—one with a coarse grid and one with a fine grid—are in a first step validated against the experimental data using the axial decay of the mean velocity and the mean mixture fraction as well as based on radial self-similar profiles of mean and root mean square values of these two quantities. Then, probability density functions (pdf) of the mixture fraction at various axial and radial positions are compared and the quality of the LES is discussed. In general, the LES results are consistent with the experimental data. However, in the flow region where the imprint of the T/NT interface layer is dominant in the mixture fraction pdf, discrepancies are observed. In a next step, statistics of the T/NT interface layer are studied, where a satisfactory agreement for the pdf of the location of the interface layer from the higher resolved LES with the experimental data is observed, while the one with the coarse grid exhibits considerable deviations. Finally, the mixture fraction profile across the interface is investigated where the same trend as for the pdf of the location is present. In particular, it is found that the sharp interface that is present in experimental studies (Gampert et al., J Fluid Mech, 2013; Westerweel et al., J Fluid Mech 631:199, 2009) is less distinct in the LES results and rather diffused in radial direction outside of the T/NT interface layer.  相似文献   

7.
Acetone droplet characteristics in reacting and non-reacting turbulent flow are predicted and compared to experimental data. Investigations are conducted to study the effects of surrounding environment properties on the velocities, dispersion, and evaporation of a relatively volatile spray fuel that featured a wide range of Stokes numbers. The simulations are performed in the framework of Reynolds Averaged Navier Stokes equations along with the Eulerian-Lagrangian approach in which 12 different classes of the dispersed phase. The phase transition is modeled by the Langmuir-Knudsen law that accounts for non equilibrium effects based on a consistent determination of the molar mass fraction on the droplet surfaces. For the droplet dispersion, the Markov sequence model is improved by adding a correction drift term to the fluid fluctuation velocity at the parcel position along the droplet trajectory. This correction term aimed at accounting for the non-homogeneity effects in the turbulent flow. The combustion is captured using the Bray-Moss-Libby model that is extended to account for the partially premixed spray combustion. The chemistry is described with the flamelet model using a recent detailed reaction mechanism that involves 84 species and 409 reactions for which the Lewis number is not set to the unity. Mean droplet velocities for reacting and non-reacting test cases are compared with experimental data. Good agreement is observed. The spray is interacting with the nozzle edge developing new classes and relatively dense region. Hence the RMS-velocities close to the nozzle exit plan demonstrate discrepancies. The droplets group combustion effect is found to be important in the modeling of the burning velocity which influences the flame propagation. Reasonable agreements between the numerical and the experimental results are also observed in the spray flux and temperature profiles.  相似文献   

8.
In this paper we prove the local controllability to trajectories of the three dimensional magnetohydrodynamic equations by means of two internal controls, one in the velocity equations and the other in the magnetic field equations and both localized in an arbitrary small subset with not empty interior of the domain. This paper improves the previous results (Barbu et al. in Comm Pure Appl Math 56:732–783, 2003; Barbu et al. in Adv Differ Equ 10:481–504, 2005; Havârneanu et al. in Adv Differ Equ 11:893–929, 2006; Havârneanu, in SIAM J Control Optim 46:1802–1830, 2007) where the second control is not localized and it allows to deduce the local controllability to trajectories with boundary controls. The proof relies on the Carleman inequality for the Stokes system of Imanuvilov et al. (Carleman estimates for second order nonhomogeneous parabolic equations, preprint) to deal with the velocity equations and on a new Carleman inequality for a Dynamo-type equation to deal with the magnetic field equations.  相似文献   

9.
The effects of millisecond-wide, pulsed current?Cvoltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2?kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2?m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current?Cvoltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27?C36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).  相似文献   

10.
The purpose of this work is the comparison of some aspects of the formulation of material models in the context of continuum thermodynamics (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997) with their formulation in the form of a General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger in Phys. Rev. E 56: 6620–6632, 1997; Öttinger and Grmela in Phys. Rev. E 56: 6633–6655, 1997; Öttinger in Beyond equilibrium thermodynamics, Wiley, New York, 2005; Grmela in J. Non-Newton. Fluid Mech. 165: 980–998, 2010). A GENERIC represents a generalization of the Ginzburg-Landau model for the approach of non-equilibrium systems to thermodynamic equilibrium. Originally developed to formulate non-equilibrium thermodynamic models for complex fluids, it has recently been applied to anisotropic inelastic solids in a Eulerian setting (Hütter and Tervoort in J. Non-Newton. Fluid Mech. 152: 45–52, 2008; 53–65, 2008; Adv. Appl. Mech. 42: 254–317, 2009) as well as to damage mechanics (Hütter and Tervoort in Acta Mech. 201: 297–312, 2008). In the current work, attention is focused for simplicity on the case of thermoelastic solids with heat conduction and viscosity in a Lagrangian setting (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997, Chaps. 9–12). In the process, the relation of the two formulations to each other is investigated in detail. A particular point in this regard is the concept of dissipation and its model representation in both contexts.  相似文献   

11.
This paper presents a numerical modeling study of one ethanol spray flame from the Delft Spray-in-Hot-Coflow (DSHC) database, which has been used to study Moderate or Intense Low-oxygen Dilution (MILD) combustion of liquid fuels (Correia Rodrigues et al. Combust. Flame 162(3), 759–773, 2015). A “Lagrangian-Lagrangian” approach is adopted where both the joint velocity-scalar Probability Density Function (PDF) for the continuous phase and the joint PDF of droplet properties are modeled and solved. The evolution of the gas phase composition is described by a Flamelet Generated Manifold (FGM) and the interaction by exchange with the mean (IEM) micro-mixing model. Effects of finite conductivity on droplet heating and evaporation are accounted for. The inlet boundary conditions starting in the dilute spray region are obtained from the available experimental data together with the results of a calculation of the spray including the dense region using ANSYS Fluent 15. A method is developed to determine a good estimation for the initial droplet temperature. The inclusion of the “1/3” rule for droplet evaporation and dispersion models is shown to be very important. The current modeling approach is capable of accurately predicting main properties, including mean velocity, droplet mean diameter and number density. The gas temperature is under-predicted in the region where the enthalpy loss due to droplet evaporation is important. The flame structure analysis reveals the existence of two heat release regions, respectively having the characteristics of a premixed and a diffusion flame. The experimental and modeled temperature PDFs are compared, highlighting the capabilities and limitations of the proposed model.  相似文献   

12.
13.
Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317–1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730–2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241–258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1–035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393–1414, 2009). In this paper we formulate a notion of weak solution to Xiang’s continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.  相似文献   

14.
In the turbulent premixed reactive flows considered in this study, i.e. large Damköhler and Reynolds numbers, the flamelet regime of turbulent combustion applies and the scalar dissipation rate and mean reaction rate are inter related. In this situation various algebraic models for the mean chemical rate that are obtained from an equilibrium of the dominant terms of the transport equation for the scalar dissipation rate, are evaluated through their application to flames stabilized in a turbulent stagnating flow. An asymptotic analysis is first performed and results obtained through the resulting one-dimensional calculation are compared with the experimental data of Li et al. (Proc Combust Inst 25:1207–1214, 1994). Eventually, three-dimensional CFD calculations including suited algebraic closures to represent the turbulent transport terms are carried out. Results are satisfactorily compared to the experimental data of Cho et al. (Proc Combust Inst 22:739–745, 1988). As a first outcome, the analysis confirms the interest and the relevance of the corresponding algebraic closures to deal with turbulent premixed combustion in such conditions. In the search of a satisfactory representation of such premixed impinging flames, the computational results also clearly emphasize the strong intertwinment that exits between the mean reaction rate, i.e. scalar dissipation rate or micro-mixing taking place at the smallest scale of the reactive flowfield, and the Reynolds fluxes modelling, i.e. turbulent macro-mixing.  相似文献   

15.
We consider systems of differential equations which model complex regulatory networks by a graph structure of dependencies. We show that the concepts of informative nodes (Mochizuki and Saito, J Theor Biol 266:323–335, 2010) and determining nodes (Foias and Temam, Math Comput 43:117–133, 1984) coincide with the notion of feedback vertex sets from graph theory. As a result we can determine the long-time dynamics of the entire network from observations on only a feedback vertex set. We also indicate how open loop control at a feedback vertex set, only, forces the remaining network to stably follow prescribed stable or unstable trajectories. We present three examples of biological networks which motivated this work: a specific gene regulatory network of ascidian cell differentiation (Imai et al., Science 312:1183–1187, 2006), a signal transduction network involving the epidermal growth factor in mammalian cells (Oda et al., Mol Syst Biol 1:1–17, 2005), and a mammalian gene regulatory network of circadian rhythms (Mirsky et al., Proc Natl Acad Sci USA 106:11107–11112, 2009). In each example the required observation set is much smaller than the entire network. For further details on biological aspects see the companion paper (Mochizuki et al., J Theor Biol, 2013, in press). The mathematical scope of our approach is not limited to biology. Therefore we also include many further examples to illustrate and discuss the broader mathematical aspects.  相似文献   

16.
Moderate-resolution numerical simulations of the impulsive acceleration of a dense gas curtain in air by a Mach 1.21 planar shock are carried out by solving the 3D compressible multi-species Navier–Stokes equations coupled with localized artificial diffusivity method to capture discontinuities in the flow field. The simulations account for the presence of three species in the flow field: air, $\hbox {SF}_6$ and acetone (used as a tracer species in the experiments). Simulations at different concentration levels of the species are conducted and the temporal evolution of the curtain width is compared with the measured data from the experimental studies by Balakumar et al. (Phys Fluids 20:124103–124113, 2008). The instantaneous density and velocity fields at two different times (prior and after the reshock) are compared with experimental data and show good qualitative agreement. The reshock process is studied by re-impacting the evolving curtain with the reflected shock wave. Reshock causes enhanced mixing and destroys the ordered velocity field causing a chaotic flow. The unsteady flow field is characterized by computing statistics of certain flow variables using two different definitions of the mean flow. The average profiles conditioned on the heavy gas (comprising $\hbox {SF}_6$ and acetone) and the corresponding fluctuating fields provide metrics which are more suitable to comparing with experimentally measured data. Mean profiles (conditioned on the heavy gas) of stream-wise velocity, variance of stream-wise velocity, and turbulent kinetic energy and PDF (probability distribution function) of fluctuating velocity components are computed at two different times along the flow evolution and are seen to show trend towards grid convergence. The spectra of turbulent kinetic energy and scalar energy (of mass fraction of heavy gas) show the existence of more than half decade of inertial sub-range at late times following reshock. The Reynolds stresses in the domain are reported while identifying the term that is dominant in its contribution to the Reynolds stresses.  相似文献   

17.
Large-eddy simulations (LES) have been coupled with a conditional moment closure (CMC) method for the computation of a series of turbulent spray flames. An earlier study by Ukai et al. (Proc. Combust. Inst. 34(1),1643–1650, 2013) gave reasonable results for the prediction of temperature and velocity profiles, but some limitations of the method became apparent. These limitations are primarily related to the upper limit in mixture fraction space. In order to enhance the applicability of the LES-CMC model, this paper proposes a two-conditional moment approach to account for the existence of pre-evaporated fuel by introducing two sets of conditional moments based on different mixture fractions. The two-conditional moment approach is first tested for a non-reacting test case. The results indicate that the spray evaporation induces relatively large conditional fluctuations within a CMC cell, and one set of conditional moments might not be sufficient. The upper limit of the mixture fraction space is dynamically selected for the solution of the second set of conditional moments, and the corresponding CMC solution in a CFD cell is estimated by interpolation between the two conditional moments weighted by the amount of vapour emitted within the domain. The cell-filtered value is given by integration of the conditional moment across mixture fraction space using a bounded β-FDF for the distribution of the scalar. As a result, the fuel concentration profiles given by LES and the two-conditional moment approach are shown to agree well. Then, the two-conditional moment approach is applied to four different flame configurations. The comparison of LES cell quantities and conditionally averaged moments indicates that the two sets of conditional moments are necessary for accurate predictions in zones where gas phase mixture fraction is significantly increased by droplet evaporation within the computational domain. The unconditional temperature profiles clearly show that the new approach improves the predictions of mean temperature especially along the centerline. Also, the better predictions of the temperature field improve the accuracy of the predicted mean axial droplet velocities. Overall, good agreement with the experimental results is found for all four cases, and the methodology is shown to be applicable to flames with a relatively wide range of fuel vapour concentrations.  相似文献   

18.
19.
An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force–flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation–dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force–flux relations are also often represented in potential form with the help of a dissipation potential (?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force–flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible–irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620–6632, 6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential–based (Grmela in Adv Chem Eng 39:75–129, 2010, Grmela in J Non-Newton Fluid Mech 165:980–986, 2010, Mielke in Continuum Mech Therm 23:233–256, 2011) form, respectively, relating the irreversible evolution to the entropy gradient. It is found that also in the case of GENERIC, the quasi-linear representation encompasses a wider class of phenomena as compared to the dissipation-based formulation. Furthermore, it is found that a potential exists for the irreversible part of the GENERIC if and only if one does for the underlying force–flux relations.  相似文献   

20.
The present paper discusses the Large Eddy Simulation of a confined non-reacting annular swirling jet. The configuration corresponds to a well investigated flow studied experimentally by Sheen (1993). The flow field is characterised by a high swirl number resulting in relatively complex features. The challenging behaviour of the flow is governed by the interaction of several recirculation zones. The central recirculation zone formed by the swirling jet is strongly affected by the cylindrical centre body which acts as a bluff body. The flow features coherent structures such as Precessing Vortex Cores (PVCs), which create regions with high velocity fluctuations. The simulations presented comprise a detailed investigation of the parameters controlling the inert flow and a thorough comparison with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号