首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional Direct Numerical Simulations (DNS) in canonical configuration have been employed to study the combustion of mono-disperse droplet-mist under turbulent flow conditions. A parametric study has been performed for a range of values of droplet equivalence ratio ?d, droplet diameter ad and root-mean-square value of turbulent velocity u. The fuel is supplied entirely in liquid phase such that the evaporation of the droplets gives rise to gaseous fuel which then facilitates flame propagation into the droplet-mist. The combustion process in gaseous phase takes place predominantly in fuel-lean mode even for ?d>1. The probability of finding fuel-lean mixture increases with increasing initial droplet diameter because of slower evaporation of larger droplets. The chemical reaction is found to take place under both premixed and non-premixed modes of combustion: the premixed mode ocurring mainly under fuel-lean conditions and the non-premixed mode under stoichiometric or fuel-rich conditions. The prevalence of premixed combustion was seen to decrease with increasing droplet size. Furthermore, droplet-fuelled turbulent flames have been found to be thicker than the corresponding turbulent stoichiometric premixed flames and this thickening increases with increasing droplet diameter. The flame thickening in droplet cases has been explained in terms of normal strain rate induced by fluid motion and due to flame normal propagation arising from different components of displacement speed. The statistical behaviours of the effective normal strain rate and flame stretching have been analysed in detail and detailed physical explanations have been provided for the observed behaviour. It has been found that the droplet cases show higher probability of finding positive effective normal strain rate (i.e. combined contribution of fluid motion and flame propagation), and negative values of stretch rate than in the stoichiometric premixed flame under similar flow conditions, which are responsible for higher flame thickness and smaller flame area generation in droplet cases.  相似文献   

2.
Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames   总被引:1,自引:0,他引:1  
Detailed scalar structure measurements of highly sheared turbulent premixed flames stabilized on the piloted premixed jet burner (PPJB) are reported together with corresponding numerical calculations using a particle based probability density function (PDF) method. The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a small stoichiometric pilot that ensures initial ignition of the jet and a large shielding coflow of hot combustion products. Four lean premixed methane-air flames with a constant jet equivalence ratio are studied over a wide range of jet velocities. The scalar structure of the flames are examined through high resolution imaging of temperature and OH mole fraction, whilst the reaction rate structure is examined using simultaneous imaging of temperature and mole fractions of OH and CH2O. Measurements of temperature and mole fractions of CO and OH using the Raman–Rayleigh–LIF-crossed plane OH technique are used to examine the flame thickening and flame reaction rates. It is found that as the shear rates increase, finite-rate chemistry effects manifest through a gradual decrease in reactedness, rather than the abrupt localized extinction observed in non-premixed flames when approaching blow-off. This gradual decrease in reactedness is accompanied by a broadening in the reaction zone which is consistent with the view that turbulence structures become embedded within the instantaneous flame front. Numerical predictions using a particle-based PDF model are shown to be able to predict the measured flames with significant finite-rate chemistry effects, albeit with the use of a modified mixing frequency.  相似文献   

3.
Measurements of mean velocity components, turbulent intensity, and Reynolds shear stress are presented in a turbulent lifted H2/N2 jet flame as well as non-reacting air jet issuing into a vitiated co-flow by laser doppler velocimetry (LDV) technique. The objectives of this paper are to obtain a velocity data base missing in the previous experiment data of the Dibble burner and so provide initial and flow field data for evaluating the validity of various numerical codes describing the turbulent partially premixed flames on this burner. It is found that the potential core is shortened due to the high ratio of jet density to co-flow density in the non-reacting cases. However, the existence of flame suppressed turbulence in the upstream region of the jet dominates the length of potential core in the reacting cases. At the centreline, the normalized axial velocities in the reacting cases are higher than the non-reacting cases, and the relative turbulent intensities of the reacting flow are smaller than in the non-reacting flow, where a self-preserving behaviour for the relative turbulent intensities exists at the downstream region. The profiles of mean axial velocity in the lifted flame distribute between the non-reacting jet and non-premixed flame both in the axial and radial distributions. The radial distributions of turbulent kinetic energy in the lifted flames exhibit a change in distributions indicating the difference of stabilisation mechanisms of the two lifted flame. The experimental results presented will guide the development of an improved modelling for such flames.  相似文献   

4.
Large Eddy Simulations of two-phase flames with the Conditional Moment Closure combustion model have been performed for flow conditions corresponding to stable and blow-off regimes in a swirl n-heptane spray burner. In the case of stable flame (i.e. low air velocity), the predicted mean and r.m.s. velocities and the location and shape of the flame agree reasonably well with experiment. In particular, the presence of localised extinctions is captured in agreement with experiment. Using model constants previously calibrated against piloted jet methane flames (Sandia F) with localised extinction, we obtain that at the experimentally determined blow-off velocity of the swirling spray flame, the predicted flame also blows off, demonstrating that the LES-CMC approach can capture the global extinction point in a realistic configuration.  相似文献   

5.
Turbulent combustion of mono-disperse droplet-mist has been analysed based on three-dimensional Direct Numerical Simulations (DNS) in canonical configuration under decaying turbulence for a range of different values of droplet equivalence ratio (?d), droplet diameter (ad) and root-mean-square value of turbulent velocity (u). The fuel is supplied in liquid phase and the evaporation of droplets gives rise to gaseous fuel for the flame propagation into the droplet-mist. It has been found that initial droplet diameter, turbulence intensity and droplet equivalence ratio can have significant influences on the volume-integrated burning rate, flame surface area and burning rate per unit area. The droplets are found to evaporate predominantly in the preheat zone, but some droplets penetrate the flame front, reaching the burned gas side where they evaporate and some of the resulting fuel vapour diffuses back towards the flame front. The combustion process in gaseous phase takes place predominantly in fuel-lean mode even for ?d > 1. The probability of finding fuel-lean mixture increases with increasing initial droplet diameter because of slower evaporation of larger droplets and this predominantly fuel-lean mode of combustion exhibits the attributes of low Damköhler number combustion and gives rise to thickening of flame with increasing droplet diameter. The chemical reaction is found to take place under both premixed and non-premixed modes of combustion and the relative contribution of non-premixed combustion to overall heat release increases with increasing droplet size. The statistical behaviours of the flame propagation and mode of combustion have been analysed in detail and detailed physical explanations have been provided for the observed behaviour.  相似文献   

6.
The focus of this work is to visualise the regions of CH2O and heat release (HR) of an unconfined turbulent premixed bluff body stabilised ethylene-air flame at conditions approaching lean blow-off using simultaneous imaging of OH- and CH2O-PLIF. The HR regions are estimated from the product of the OH and CH2O profiles. At conditions near blow-off, wide regions of CH2O are observed inside the recirculation zone (RZ). The presence of CH2O and HR inside the RZ is observed to follow fragmentation of the downstream flame parts near the top of the RZ. The presence of wide regions void of both OH and CH2O inside the RZ at conditions very close to blow-off indicates the possible entrainment of un-reacted gases into the RZ. The behaviour of the lean ethylene-air flame with Lewis number (Le) greater than 1 is compared to that of a lean methane-air flame with Le of approximately 1. For both fuels, qualitatively similar observations of flame fragmentation downstream followed by build-up of CH2O and HR inside the RZ are observed at conditions near lean blow-off. Also, a similar trend of flame front curvature conditioned on HR was observed for both the ethylene-air and methane-air flames, where the magnitude of HR was observed to increase with the absolute value of curvature.  相似文献   

7.
In order to determine the mean rate of product creation within the framework of the Turbulent Flame Closure (TFC) model of premixed combustion, the model is combined with a simple closure of turbulent scalar flux developed recently by the present authors based on the flamelet concept of turbulent burning. The model combination is assessed by numerically simulating statistically planar, one-dimensional, developing premixed flames that propagate in frozen turbulence. The mean rate of product creation yielded by the combined model decreases too slowly at the trailing edges of the studied flames, with the effect being more pronounced at longer flame-development times and larger ratios of rms turbulent velocity u′ to laminar flame speed S L . To resolve the problem, the above closure of turbulent scalar flux is modified and the combination of the modified closure and TFC model yields reasonable behaviour of the studied rate. In particular, simulations indicate an increase in the mean combustion progress variable associated with the maximum rate by u′/S L , in line with available DNS data. Finally, the modified closure of turbulent scalar flux is validated by computing conditioned velocities and turbulent scalar fluxes in six impinging-jet flames. The use of the TFC model for simulating such flames is advocated.  相似文献   

8.
The interaction of a Gaussian negative pulse with a H2/O2/N2 turbulent premixed flame is examined using Direct Numerical Simulation (DNS). Transport properties and chemical kinetics are described in a very detailed manner. An extended nonlinear local Rayleigh's criterion, for laminar as well as turbulent, premixed or nonpremixed flames, is proposed. Situations in which amplification or attenuation occur are listed. Calculations of a turbulent flame are then carried out with and without an acoustic wave and results are recorded at the same time. The influence of acoustic wave/turbulent flame interaction is obtained by a simple difference. It is shown that longitudinal and transverse velocity components are perturbed by the turbulent flame. Moreover, the vorticity induced by the acoustic wave is observed to be weak. Finally, Rayleigh's criterion shows that wave amplification occurs punctually. To cite this article: A. Laverdant, D. Thévenin, C. R. Mecanique 333 (2005).  相似文献   

9.
Experiments are carried out on partially premixed turbulent flames stabilized in a conical burner. The investigated gaseous fuels are methane, methane diluted with nitrogen, and mixtures of CH4, CO, CO2, H2 and N2, simulating typical products from gasification of biomass, and co-firing of gasification gas with methane. The fuel and air are partially premixed in concentric tubes. Flame stabilization behavior is investigated and significantly different stabilization characteristics are observed in flames with and without the cone. Planar laser induced fluorescence (LIF) imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are carried out to gain further understanding of the flame/flow interaction in the cone. The data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities.  相似文献   

10.
The stabilization characteristics and local extinction structures of partially premixed methane/air flames were studied using simultaneous OH-PLIF/PIV techniques, and large eddy simulations employing a two-scalar flamelet model. Partial premixing was made in a mixing chamber comprised of two concentric tubes, where the degree of partial premixing of fuel and air was controlled by varying the mixing length of the chamber. At the exit of the mixing chamber a cone was mounted to stabilize the flames at high turbulence intensities. The stability regime of flames was determined for different degree of partial premixing and Reynolds numbers. It was found that in general partially premixed flames at low Reynolds numbers become more stable when the level of partial premixing of air to the fuel stream decreases. At high Reynolds numbers, for the presently studied burner configuration there is an optimal partial premixing level of air to the fuel stream at which the flame is most stable. OH-PLIF images revealed that for the stable flames not very close to the blowout regime, significant local extinction holes appear already. By increasing premixing air to fuel stream successively, local extinction holes grow in size leading to eventual flame blowout. Local flame extinction was found to frequently attain to locations where locally high velocity flows impinging to the flame. The local flame extinction poses a future challenge for model simulations and the present flames provide a possible test case for such study.  相似文献   

11.
An investigation of the leading edge characteristics in lifted turbulent methane-air (gaseous) and ethanol-air (spray) diffusion flames is presented. Both combustion systems consist of a central nonpremixed fuel jet surrounded by low-speed air co-flow. Non-intrusive laser-based diagnostic techniques have been applied to each system to provide information regarding the behavior of the combustion structures and turbulent flow field in the regions of flame stabilization. Simultaneous sequential CH-PLIF/particle image velocimetry and CH-PLIF/Rayleigh scattering measurements are presented for the lifted gaseous flame. The CH-PLIF data for the lifted gas flame reveals the role that ``leading-edge' combustion plays as the stabilization mechanism in gaseous diffusion flames. This phenomenon, characterized by a fuel-lean premixed flame branch protruding radially outward at the flame base, permits partially premixed flame propagation against the incoming flow field. In contrast, the leading edge of the ethanol spray flame, examined using single-shot OH-PLIF imaging and smoke-based flow visualization, does not exhibit the same variety of leading-edge combustion structure, but instead develops a dual reaction zone structure as the liftoff height increases. This dual structure is a result of the partial evaporation (hence partial premixing) of the polydisperse spray and the enhanced rate of air entrainment with increased liftoff height (due to co-flow). The flame stabilizes in a region of the spray, near the edge, occupied by small fuel droplets and characterized by intense mixing due to the presence of turbulent structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Large Eddy Simulations (LES) with the Conditional Moment Closure (CMC) combustion model of swirling ethanol spray flames have been performed in conditions close to blow-off for which a wide database of experimental measurements is available for both flame and spray characterization. The solution of CMC equations exploits a three-dimensional unstructured code with a first order closure for chemical source terms. It is shown that LES/CMC is able to properly capture the flame structure at different conditions and agrees reasonably well with the measurements both in terms of mean flame shape and dynamic behaviour of the flame evaluated in terms of local extinctions and statistics of the lift-off height. Experimental measurements of the overall (liquid plus gaseous) mixture fraction, performed using the Laser-Induced Breakdown Spectroscopy technique, are also included allowing further assessment and validation of the numerical method. The sensitivity of the simulation results to the various boundary conditions is discussed.  相似文献   

13.
The Large Eddy Simulation (LES)/three-dimensional Conditional Moment Closure (CMC) model with detailed chemistry is applied to predict the operating condition and dynamics of complete extinction (blow-off) in swirling non-premixed methane flames. Using model constants previously selected to provide relatively accurate predictions of the degree of local extinction in the piloted jet flames Sandia D ?F, the error in the blow-off air velocity predicted by LES/3D-CMC in short, recirculating flames with strong swirl for a range of fuel flow rates is within 25 % of the experimental value, which is considered a new and promising result for combustion LES that has not been applied before for the prediction of the whole blow-off curve in complex geometries. The results also show that during the blow-off transient, the total heat release gradually decreases over a duration that agrees well with experiment. The evolution of localized extinction, reactive scalars and scalar dissipation rate is analyzed. It has been observed that a consistent symptom for flames approaching blow-off is the appearance of high-frequency and high-magnitude fluctuations of the conditionally filtered stoichiometric scalar dissipation rate, resulting in an increased fraction of local extinction over the stoichiometric mixture fraction iso-surfaces. It is also shown that the blow-off time changes with the different blow-off conditions.  相似文献   

14.
CH double-pulsed PLIF measurement in turbulent premixed flame   总被引:1,自引:0,他引:1  
The flame displacement speeds in turbulent premixed flames have been measured directly by the CH double-pulsed planar laser-induced fluorescence (PLIF). The CH double-pulsed PLIF systems consist of two independent conventional CH PLIF measurement systems and laser beams from each laser system are led to same optical pass using the difference of polarization. The highly time-resolved measurements are conducted in relatively high Reynolds number turbulent premixed flames on a swirl-stabilized combustor. Since the time interval of the successive CH PLIF can be selected to any optimum value for the purpose intended, both of the large scale dynamics and local displacement of the flame front can be discussed. By selecting an appropriate time interval (100–200 μs), deformations of the flame front are captured clearly. Successive CH fluorescence images reveal the burning/generating process of the unburned mixtures or the handgrip structures in burnt gas, which have been predicted by three-dimensional direct numerical simulations of turbulent premixed flames. To evaluate the local flame displacement speed directly from the successive CH images, a flame front identification scheme and a displacement vector evaluation scheme are developed. Direct measurements of flame displacement speed are conducted by selecting a minute time interval (≈30 μs) for different Reynolds number (Re λ = 63.1–115.0). Local flame displacement speeds coincide well for different Reynolds number cases. Furthermore, comparisons of the mean flame displacement speed and the mean fluid velocity show that the convection in the turbulent flames will affect the flame displacement speed for high Reynolds number flames.  相似文献   

15.
Quantitative hydroxyl time-series measurements from a set of stable and extinguishing turbulent opposed-flow partially premixed CH4/air flames are used to investigate the effect of Reynolds number and fuel-side equivalence ratio on the structure of turbulent partially premixed flames. The hydroxyl (OH) integral time scale, computed from the autocorrelation function, is used to characterize OH fluctuations and is found to reach a minimum at the axial location of peak OH. Analyses of the duration of and period between bursts in the OH time series are used to examine the dynamics of flame-front motion. In general, with increasing Reynolds number (Re), the distribution in OH burst times shifts towards smaller time scales. A hydroxyl intermittency parameter is also defined from the bursts to quantify the presence or absence of OH. For flames with the same fuel-side equivalence ratio, the hydroxyl intermittency at peak OH remains almost constant when going from stable to extinguishing flames. However, histograms portray an increase in burst separation times for flames displaying occasional extinction events. Hydroxyl time series for a partially premixed flame at a fuel-side equivalence ratio of 2.0 and Re = 6650 are synthesized by using mixture-fraction simulations based on calculated state relationships for OH versus mixture fraction (f). The laminar-flamelet model is employed to explore relations between OH and f so as to predict trends in mixture-fraction time scales.“Time-Series Measurements in Turbulent Opposed-Jet Flames" is submitted for consideration as a full length article to Flow Turbulence and Combustion.  相似文献   

16.
One of the most promising methods for reducing NO x emissions of jet engines is the lean combustion process. For realization of this concept the percentage of air flowing through the combustor dome has to be drastically increased, which implies high volume fluxes in the primary zone of the combustion chamber and represents a substantial challenge in regard to the flame stabilization. Swirl motion is thus applied to the air flux by the swirl generator and decisively contributes to the flame stabilization. The current paper reviews an atmospheric investigation of a burner configuration in regard to the weak extinction limit, comprising a confined non-premixed swirl-stabilized flame. The burner can be supplied with either kerosene or after a small adaption with natural gas (methane). Therefore, a comparison of a kerosene-fuelled flame (spray flame) to a natural gas fuelled one (methane flame) can be performed. Both are realized by almost identical burner configuration and at identical conditions. The main idea of this work is to align the stability characteristics of both flames by means of similarity. However, fundamental differences regarding the flame structures of the flames are detected through in-flame measurements. This determines the limits of the current approach and motivates an appropriate choice of flame modeling.  相似文献   

17.
The present study investigated numerically the physical mechanisms underlying the transient behaviors of the flame over a porous cylindrical burner. The numerical results showed that a cold flow structure at a fixed inflow velocity of Uin = 0.6 m/s in a wind tunnel could be observed in two co-existing recirculation flows. Flow variations occur repeatedly until t = 4.71 s, and then a vortex existed steadily behind the burner and no shading occurred. The ignition of flammable mixture led to a rapid rise in gas temperature and a sudden gas expansion. When it reached the stable envelope flame condition, Uin is adjusted to an assigned value. Two blow-off mechanisms were identified. It was also found in the study flame shapes with buoyancy effects agreed with the ones observed experimentally by Tsai. Furthermore, the lift-off flame would appear briefly between the envelopes and wake ones, and was stabilized as a wake flame.  相似文献   

18.
The classical “fast chemistry” analysis by Damköhler remains a common basis for calculation methods aimed at turbulent reacting flows. Perturbation approaches can be used to introduce finite rate chemistry effects, particularly where a distinct chemical time-scale separation is present, though more comprehensive techniques, e.g. based on a transported joint probability density function (JPDF), are typically required. Potential difficulties with the JPDF technique include issues related to the intrinsic structure of turbulent flames, particularly at low Reynolds numbers, and models for molecular mixing. The ability to predict the formation of NO is particularly interesting in this context given the strong sensitivity to chemical kinetic and non-adiabatic effects. The current work initially provides an assessment of uncertainties in the formation chemistry of NO in the context of new quantitative measurements, obtained in non-premixed laminar methane/air counterflow flames using ps-LIF, and subsequently explores how these translate to turbulent flames. A consistent systematically reduced (16 independent, 4 dependent and 28 steady state scalars) reaction mechanism is applied to model the turbulent flames of Barlow and co-workers (8200 ≤Re≤ 44000). The highest Re number flame additionally permits an investigation into the ability of the transported JPDF technique to deal with emissions of nitric oxide in flames close to global extinction. The work shows that the technique has the potential to reproduce NO levels and conditional PDFs under conditions with significant local extinction/re-ignition to within the uncertainties associated with the principal elementary reaction steps.  相似文献   

19.
The statistical behaviours of sub-grid flux of reaction progress variable has been assessed for premixed turbulent flames with global Lewis number Le (=thermal diffusivity/mass diffusivity) ranging from 0.34 to 1.2 using a Direct Numerical Simulation (DNS) database of freely propagating statistically planar flames. It is known that the sub-grid scalar flux shows counter-gradient transport when the velocity jump across the flame due to heat release overcomes the effects of turbulent velocity fluctuation. The results show that the sub-grid scalar flux components exhibit counter-gradient transport for all cases considered here. The extent of counter-gradient transport increases with increasing filter width Δ and decreasing value of Le. This is due to the fact that flames with Le  1 (e.g. Le = 0.34) exhibit thermo-diffusive instabilities, which in turn increases the extent of counter-gradient transport. The effects of heat release and flame normal acceleration weaken with increasing Le. Several established algebraic models have been assessed in comparison to the sub-grid scalar flux components extracted from explicitly filtered DNS data in terms of their correlation coefficients at the vector level and their mean variation conditional on the Favre-filtered progress variable. The gradient transport closure does neither capture the quantitative nor the qualitative behaviour of the different sub-grid scalar flux components for all filter widths in all cases considered here. Models which account for local flame normal acceleration perform better, especially when the flame remains completely unresolved. In particular those models that account for the alignment of local resolved velocity and scalar gradients by using a tensor diffusivity, perform relatively better than the other alternative models irrespective of Le.  相似文献   

20.
The effects of mean flame radius and turbulence on self-sustained combustion of turbulent premixed spherical flames in decaying turbulence have been investigated using three-dimensional direct numerical simulations (DNS) with single step Arrhenius chemistry. Several flame kernels with different initial radius or initial turbulent field have been studied for identical conditions of thermo-chemistry. It has been found that for very small kernel radius the mean displacement speed may become negative leading ultimately to extinction of the flame kernel. A mean negative displacement speed is shown to signify a physical situation where heat transfer from the kernel overcomes the heat release due to combustion. This mechanism is further enhanced by turbulent transport and, based on simulations with different initial turbulent velocity fields, it has been found that self-sustained combustion is adversely affected by higher turbulent velocity fluctuation magnitude and integral length scale. A scaling analysis is performed to estimate the critical radius for self-sustained combustion in premixed flame kernels in a turbulent environment. The scaling analysis is found to be in good agreement with the results of the simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号