首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

2.
A Capillary Microstructure of the Wetting Front   总被引:3,自引:0,他引:3  
This article reports the experimental results of a study of the wetting-front microscale structure formed only by capillary forces in homogeneous and random etched glass capillary models. In the homogeneous model, water propagates through the capillary system, evenly filling the capillaries across the direction of flow. Air is trapped by the pinch-off mechanism inside the pore bodies in the form of individual bubbles. The experiments specified three consecutive steps of the pinch-off mechanism, film flow, snap-off, and interface movement. In the random model, both the bypass and pinch-off, forming bypass/cut-off mechanism, create residual air structure. Bypass traps air inside large capillary-pore aggregates which are bounded by small-diameter capillaries in where pinch-off traps air in the adjacent pores. An analysis of the residual air distribution versus depth below the surface in the homogeneous and random micromodels made it possible to identify three successive zones, namely a transition zone, a transmission zone, and a wetting-and-front zone. In the transition zone, the residual air content increases with depth from zero to the constant value in the transmission zone where it remains practically constant. The capillary processes within the wetting-and-front combined zone govern air replacement with wetting and formation of the transmission zone.  相似文献   

3.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

4.
The delay differential equation
with >0 and smooth real functions f, r satisfying f(0)=0, f<0, and r(0)=1 models a system governed by state-dependent delayed negative feedback and instantaneous damping. For a suitable R1 the solutions generate a semiflow F on a compact subset LK of C([–R, 0], ). F leaves invariant the subset S of LK with at most one sign change on all subintervals of [–R, 0] of length one. The induced semiflow on S has a global attractor \{0} coincides with the set of segments of bounded globally defined slowly oscillating solutions. If {0}, then is homeomorphic to the closed unit disk, and the unit circle corresponds to a periodic orbit.  相似文献   

5.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

6.
Correlations for corrections to hot-wire data for the effects of wall proximity within the viscous sublayer are usually presented in the form u/u = F (y u /). The application of such correlations requires a prior knowledge of the wall shear stress; alternatively, the correlation must be used in an iterative fashion. It is shown in the present note that any such correlation may be recast with no loss of generality in the explicit form u/u m = f (y u m/), which is more convenient for use.List of symbols u difference between measured and actual velocities, u mu - u m measured velocity - u shear velocity, - u + on-dimensional velocity, u/u - y distance from wall - y + non-dimensional distance from wall, y u / - fluid density - fluid kinematic viscosity - s wall shear stress  相似文献   

7.
Knowles' representation theorem for harmonically time-dependent free surface waves on a homogeneous, isotropic elastic half-space is extended to include harmonically time-dependent free processes for thermoelastic surface waves in generalized thermoelasticity of Lord and Shulman and of Green and Lindsay.r , , r , , .This work was done when author was unemployed.  相似文献   

8.
By utilizing available experimental data for net energy transfer spectra for homogeneous turbulence, contributions P(, ) to the energy transfer at a wavenumber from various other wavenumbers are calculated. This is done by fitting a truncated power-exponential series in and to the experimental data for the net energy transfer T(), and using known properties of P(, ). Although the contributions P(, ) obtained by using this procedure are not unique, the results obtained by using various assumptions do not differ significantly. It seems clear from the results that for a region where the energy entering a wavenumber band dominates that leaving, much of the energy entering the band comes from wavenumbers which are about an order of magnitude smaller. That is, the energy transfer is rather nonlocal. This result is not significantly dependent on Reynolds number (for turbulence Reynolds numbers based on microscale from 3 to 800). For lower wavenumbers, where more energy leaves than enters a wavenumber band, the energy transfer into the band is more local, but much of the energy then leaves at distant wavenumbers.  相似文献   

9.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

10.
Measurements have been made in nearly-isotropic grid turbulence on which is superimposed a linearly-varying transverse temperature distribution. The mean-square temperature fluctuations, , increase indefinitely with streamwise distance, in accordance with theoretical predictions, and consistent with an excess of production over dissipation some 50% greater than values recorded in previous experiments. This high level of production has the effect of reducing the ratio,r, of the time scales of the fluctuating velocity and temperature fields. The results have been used to estimate the coefficient,C, in Monin's return-to-isotropy model for the slow part of the pressure terms in the temperature-flux equations. An empirical expression by Shih and Lumley is consistent with the results of earlier experiments in whichr 1.5, C 3.0, but not with the present data where r 0.5, C 1.6. Monin's model is improved when it incorporates both time scales.List of symbols C coefficient in Monin model, Eq. (5) - M grid mesh length - m exponent in power law for temperature variance, x m - n turbulence-energy decay exponent,q 2 x -n - p production rate of - p pressure - q 2 - R microscale Reynolds number - r time-scale ratiot/t - T mean temperature - U mean velocity - mean-square velocity fluctuations (turbulent energy components) - turbulent temperature flux - x, y, z spatial coordinates - temperature gradient dT/dy - thermal diffusivity - dissipation rate ofq 2/2 - dissipation rate of - Taylor microscale (2=5q2/) - temperature microscale - v temperature-flux correlation coefficient, /v - dimensionless distance from the grid,x/M  相似文献   

11.
The seepage velocity arising from pressure and buoyancy driving forces in a slender vertical layer of fluid-saturated porous media is considered. Quadratic drag (Forcheimer effects) and Brinkman viscous forces are included in the analysis. Parameters are identified which characterize the influence of matrix permeability, quadratic drag and buoyancy. An explicit solution is obtained for pressure-driven flow which illustrates the influence of quadratic drag and the strong boundary layer behavior expected for low permeability media. The experimental data of Givler and Altobelli [2] for water seepage through a high porosity foam is found to yield good agreement with the present analysis. For the case of buoyancy-driven flow, a uniformly valid approximate solution is found for low permeability media. Comparison with the pressure-driven case shows strong similarities in the near-wall region.Nomenclature B function of - d layer thickness - D discriminant defined by Equation (9) - modified Darcy number - F Forcheimer constant - g gravitational acceleration - k porous matrix permeability - m parameter defined by Equation (11) - p pressure - p modified pressure - pressure gradient - R buoyancy parameter - T 0 nominal layer temperature - u seepage velocity - dimensionless seepage velocity - c composite approximation - i boundary layer velocity - o outer or core flow approximation - m midplane velocity - U matching velocity - V cross-sectional average velocity - w variable defined by Equation (12) - x, z Cartesian coordinates - , dimensionless Cartesian coordinates - inertia parameter - T layer temperature difference - larger root of cubic given by Equation (8) - fluid dynamic viscosity - e effective viscosity of fluid saturated medium - variable defined by Equation (18) - 0 fluid density - smaller root of cubic given by Equation (8) - variable defined by Equation (18) - stretched inner coordinate - porosity - function of   相似文献   

12.
We consider the equation a(y)uxx+divy(b(y)yu)+c(y)u=g(y, u) in the cylinder (–l,l)×, being elliptic where b(y)>0 and hyperbolic where b(y)<0. We construct self-adjoint realizations in L2() of the operatorAu= (1/a) divy(byu)+(c/a) in the case ofb changing sign. This leads to the abstract problem uxx+Au=g(u), whereA has a spectrum extending to + as well as to –. For l= it is shown that all sufficiently small solutions lie on an infinite-dimensional center manifold and behave like those of a hyperbolic problem. Anx-independent cross-sectional integral E=E(u, ux) is derived showing that all solutions on the center manifold remain bounded forx ±. For finitel, all small solutionsu are close to a solution on the center manifold such that u(x)-(x) Ce -(1-|x|) for allx, whereC and are independent ofu. Hence, the solutions are dominated by hyperbolic properties, except close to the terminal ends {±1}×, where boundary layers of elliptic type appear.  相似文献   

13.
An integral method of analyzing turbulent flow behind plane and axisymmetric steps is proposed, which will permit calculation of the pressure distribution, the displacement thickness, the momentum-loss thickness, and the friction in the zone of boundary layer interaction with an external ideal flow. The characteristics of an incompressible turbulent equilibrium boundary layer are used to analyze the flow behind the step, and the parameters of the compressible boundary layer flow are connected with the parameters of the incompressible boundary layer flow by using the Cowles-Crocco transformation.A large number of theoretical and experimental papers devoted to this topic can be mentioned. Let us consider just two [1, 2], which are similar to the method proposed herein, wherein the parameter distribution of the flow of a plane nearby turbulent wake is analyzed. The flow behind the body in these papers is separated into a zone of isobaric flow and a zone of boundary layer interaction with an external ideal flow. The jet boundary layer in the interaction zone is analyzed by the method of integral relations.The flow behind plane and axisymmetric steps is analyzed on the basis of a scheme of boundary layer interaction with an external ideal supersonic stream. The results of the analysis by the method proposed are compared with known experimental data.Notation x, y longitudinal and transverse coordinates - X, Y transformed longitudinal and transverse coordinates - , *, ** boundary layer thickness, displacement thickness, momentum-loss thickness of a boundary layer - , *, ** layer thickness, displacement thickness, momentum-loss thickness of an incompressible boundary layer - u, velocity and density of a compressible boundary layer - U, velocity and density of the incompressible boundary layer - , stream function of the compressible and incompressible boundary layers - , dynamic coefficient of viscosity of the compressible and incompressible boundary layers - r1 radius of the base part of an axisymmetric body - r radius - R transformed radius - M Mach number - friction stress - p pressure - a speed of sound - s enthalpy - v Prandtl-Mayer angle - P Prandtl number - Pt turbulent Prandtl number - r2 radius of the base sting - b step depth - =0 for plane flow - =1 for axisymmetric flow Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 33–40, May–June, 1971.In conclusion, the authors are grateful to M. Ya. Yudelovich and E. N. Bondarev for useful comments and discussions.  相似文献   

14.
Zusammenfassung Es wird eine analytische Lösung für die Absorption in einem laminaren Rieselfilm mit homogener und heterogener chemischer Reaktion 1. Ordnung vorgestellt, wobei der Stofftransportwiderstand auf der Gasseite liegt. Die Lösung ist eine Funktion von drei dimensionslosen ParameternBi, und, welche die BiotZahl und einen homogenen bzw. heterogenen Reaktionsparameter darstellen. Es wird gezeigt, daß für feste Werte vonBi und die Absorptionsrate (bezogen auf die Breite 1 des Rieselfilms) über eine gewisse Länge (dimensionslos) des Rieselfilms unabhängig von ist, wenn, < 0,6 ist. Die laufende Länge wird von der Stelle aus gemessen, an der die Absorption beginnt. Für b 0,6 nimmt der FlußQ mit zu, erreicht aber einen Sättigungswert bei=10, wonachQ nurmehr sehr langsam anwächst. Jedoch für ein gegebenes und ohne Übergangswiderstand im Film (Bi ) nimmtQ mit für alle 0 zu.
Mass transfer with chemical reaction in a laminar falling film
An analytical solution is presented for gas absorption in a laminar falling film with first-order homogeneous and heterogeneous chemical reaction and external gas-phase mass transfer resistance. The solution depends on three dimensionless parametersBi, and, wich represent the Biot number, homogeneous and heterogeneous reaction parameters, respectively. It is shown that for fixed values ofBi and, the rate of gas absorption (per unit breadth) over a certain length; (dimensionless) along the falling film measured from the point where surface absorption begins is independent of if < 0.6. For 0.6, this fluxQ increases with but reaches a saturation value at=10 beyond whichQ increases very slowly. But for given and zero gas film resistance (Bi ),Q increases with for all 0.
  相似文献   

15.
An effective numerical procedure, based on the Galerkin method, for finding solutions of the stationary traveling wave type in the complete formulation is proposed for the case of viscous liquid films. Examples of a viscous film flowing freely down a vertical surface have been calculated. The calculations have been made for various values of the dimensionless surface tension , including =0. The method makes it possible to predict a number of bifurcations that occur as decreases. The existence of numerous families of stationary traveling waves when 1 was demonstrated in [6]. The present study shows that as 1 all but one of these families of wave solutions disappear. The shape of the periodic and solitary waves and the pressure distribution in the film are found for various . When =0 and the wave number is fairly small, the periodic solution has a singularity, as predicted in [14]: at the crest of the wave a corner point appears; the angle between the tangents at this point =140–150. The method proposed can be used to calculate other wavy film flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 94–100, May–June, 1990.  相似文献   

16.
Linear stability theory is used to investigate the onset of longitudinal vortices in laminar boundary layers along horizontal semi-infinite flat plates heated or cooled isothermally from below by considering the density inversion effect for water using a cubic temperature-density relationship. The analysis employs non-parallel flow model incorporating the variation of the basic flow and temperature fields with the streamwise coordinate as well as the transverse velocity component in the disturbance equations. Numerical results for the critical Grashof number Gr L * =Gr X * /Re X< Emphasis>/3/2 are presented for thermal conditions corresponding to –0.5 1–2.0 and –0.8 21.2.Nomenclature a wavenumber, 2/ - D operator, d/d - F (f–f)/2 - f dimensionless stream function - g gravitational acceleration - G eigenvalue, Gr L/ReL - Gr L Grashof number based on L - Gr X Grashof number based on X - L characteristic length, (X/U)1/2 - M number of divisions in y direction - P pressure - Pr Prandtl number, / - p dimensionless pressure, P/( 2 /Re L) - Re L, ReX Reynolds numbers, (U L/)=Re X< 1/2 and (U), respectively - T temperature - U, V, W velocity components in X, Y, Z directions - u, v, w dimensionless perturbation velocities, (U, V, W)/U - X, Y, Z rectangular coordinates - x, y, z dimensionless coordinates, (X, Y, Z)/L - thermal diffusivity - coefficient of thermal expansion - 1, 2 temperature coefficients for density-temperature relationship - similarity variable, Y/L=y - dimensionless temperature disturbance, /T - dimensionless wavelength of vortex rolls, 2/a - 1, 2 thermal parameters defined by equation (12) - kinematic viscosity - density - dimensionless basic temperature, (T b T )/T - –1 - T temperature difference, (T wT ) - * critical value or dimensionless disturbance amplitude - prime, disturbance quantity or differentiation with respect to - b basic flow quantity - max value at a density maximum - w value at wall - free stream condition  相似文献   

17.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

18.
Summary Two-dimensional stress singularities in wedges have already drawn attention since a long time. An inverse square-root stress singularity (in a 360° wedge) plays an important role in fracture mechanics.Recently some similar three-dimensional singularities in conical regions have been investigated, from which one may be also important in fracture mechanics.Spherical coordinates are r, , . The conical region occupied by the elastic homogeneous body (and possible anisotropic) has its vertex at r=0. The mantle of the cone is described by an arbitrary function f(, )=0. The displacement components be u. For special values of (eigenvalues) there exist states of displacements (eigenstates) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],which may satisfy rather arbitrary homogeneous boundary conditions along the generators.The paper brings a theorem which expresses that if is an eigenvalue, then also-1- is an eigenvalue. Though the theorem is related to a known theorem in Potential Theory (Kelvin's theorem), the proof has to be given along quite another line.
Zusammenfassung Zwei-dimensionale Spannungssingularitäten in keilförmigen Gebieten sind schon längere Zeit untersucht worden und neuerdings auch ähnliche drei-dimensionale Singularitäten in konischen Gebieten.Kugelkoordinaten sind r, , . Das konische Gebiet hat seine Spitze in r=0. Der Mantel des Kegels lässt sich beschreiben mittels einer willkürlichen Funktion f(, )=0. Die Verschiebungskomponenten seien u. Für spezielle Werte von (Eigenwerte) bestehen Verschiebunszustände % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],welche homogene Randwerte der Beschreibenden des Kegels entlang genügen.Das Bericht bringt ein Theorem, welches aussagt, das und =–1– beide Eigenwerte sind.
  相似文献   

19.
Let (X, ) and (Y,C) be two measurable spaces withX being a linear space. A system is determined by two functionsf(X): X X and:X×YX, a (small) positive parameter and a homogeneous Markov chain {y n } in (Y,C) which describes random perturbations. States of the system, say {x n X, n=0, 1,}, are determined by the iteration relations:x n+1 =f(x n )+(x n ,Yn+1) forn0, wherex 0 =x 0 is given. Here we study the asymptotic behavior of the solutionx n as 0 andn under various assumptions on the data. General results are applied to some problems in epidemics, genetics and demographics.Supported in part by NSF Grant DMS92-06677.Supported in part by NSF Grant DMS93-12255.  相似文献   

20.
Zusammenfassung Der lokale Stoffübergang wurde in Abhängigkeit von der Meßlänge, dem Startort und der Zulaufhöhe gemessen. Der Gültigkeitsbereich der Theorie von Nusselt wird ermittelt. Die Reynolds-Zahl nahm Werte zwischen 3,86 und 2496 an. Die örtlich wirkende Hydrodynamik ist entscheidend für das Anwachsen der örtlichen Sherwood-Zahl. Die Genauigkeit aller Versuchsergebnisse kann auf ± 5% abgeschätzt werden.
Investigation of the local mass transfer of a laminar and turbulent falling liquid film
The local mass transfer was measured as a function of the measuring length, the starting point and the liquid height above the ring-slot. The range of the Reynolds number was 3,86 Re 2496. The validity of the Nusselt theory and the range of it is shown. The local hydrodynamic is the most important factor of the increase of the local Sherwood number. The accuracy of the measurements is ± 5%.

Bezeichnungen a Temperaturleitfähigkeit m2/s=/(cp) - c Konzentration, c=¯c + c kmol/m3 - ci0 Konzentration im Flüssigkeitskern kmol/m3 - D Diffusionskoeffizient m2/s - EL-NR Elektrodennummer - Fa Faraday-Konstante A s/kgäq=96,5·106 - g Erdbeschleunigung m/s2 - iG Grenzstromdichte A/m2 - u Geschwindigkeit in x-Richtung, u= + u - U Umfang des Rohres m - v Geschwindigkeit in y-Rich- m/stung, v=¯v + v - V* Volumenstrom m3/s - x Lauflänge, Koordinate in m Strömungsrichtung - xM Meßlänge für den Stoff-Übergang m - xST Startort für den Stoff-Übergang m - y Wegkoordinate senkrecht zur Rohroberfläche m - z Wertigkeit der Elektro-denreaktion kgäq/kmol - ZH Zulaufhöhe m - Wärmeübergangskoeffizient W/m2C - Stoffübergangskoeffizient m/s - Filmdicke m - Wärmeleitfähigkeit W/(mC) - kinematische Viskosität m2/s - Re=u/=V*/U Reynolds-Zahl - Pr=/a=cp/ Prandtl-Zahl - Sc=/D Schmidt-Zahl - Nu= / Nusselt-Zahl - Sh= /D Sherwood-Zahl - SHL lokale Sherwood-Zahl - SHM mittlere Sherwood-Zahl - - zeitlich gemittelt - örtlich gemittelt Die Durchführung der Arbeit am Institut für Verfahrens — und Kältetechnik der ETH Zürich bei Prof. Dr. P. Grassmann wurde ermöglicht durch Zuschüsse der Kommission zur Förderung der wissenschaftlichen Forschung und meiner Eltern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号