首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Copper chelates with tridentate ligands containing pyridine or pyrazole ring at the azomethine or azo fragment were synthesized by chemical electrochemical methods, and their structure was characterized by the EXAFS spectra. Thermal magnetochemical analysis of the complexes revealed antiferromagnetic exchange interaction in all complexes. The exchange interaction parameter of the complex containing an N-tosylamino group in the ortho position with respect to the azomethine group is much lesser than that of the corresponding complex having an oxygen atom in the same position. The copper chelate derived from azopyrazole ligand shows low-temperature ferromagnetic phase transition.  相似文献   

2.
The interaction of diglycollic acid ligand with iron(III), cobalt(II), nickel(II) and copper(II) salts was investigated potentiometrically and spectrophotometrically. Only 1:1 complexes were formed in solution and solid. The pK's of the ligand and its complexes were computed. The electronic absorption spectra of the complexes depict the octahedral geometry. The infra-red spectra of the ligand and its complexes were discussed.  相似文献   

3.
Equilibrium constants of complex formation, rate constants of chemical exchange reactions, and characteristics of electronic absorption spectra for species detected in aqueous solution of copper(II) with triglycine were determined, and conclusions on the structure of the complexes were made. A possibility of H-bond formation between the ammonium group of the zwitter-ionic form of the ligand and the second peptide oxygen in the anionic form of an adjacent ligand was shown. Kinetics and mechanisms of ligand and proton exchanges in solutions of copper(II) bistripeptide complexes with the ligand containing a deprotonated peptide nitrogen atom were studied. A new mechanism was proposed for hydroxide-catalyzed substitution reactions in copper(II) complexes with tripeptides.  相似文献   

4.
A series of copper alkyls (methyl, ethyl and n-propyl) with ligands (2,2′-bipyridyl and tricyclohexylphosphine) and copper methyl without ligands has been prepared by the reaction of copper(II) acetylacetonate with dialkylaluminum monoethoxides in the presence or absence of the ligand in diethyl ether under nitrogen at low temperature. The copper alkyls were characterized by elemental analysis, chemical reactions, and by IR and NMR spectra. The ligand-free methylcopper is thermally very unstable and decomposed explosively; the bipyridyl ligand showed little effect on the stability of the copper alkyl. In contrast, the tricyclohexylphosphine-coordinated complexes are thermally very stable. Various reactions of the tricyclohexylphosphine-coordinated copper alkyls toward carbon dioxide, alkyl halides and olefins have been studied.  相似文献   

5.
Detailed chemical, spectroelectrochemical and computational studies have been used to investigate the mechanism of hypoxia selectivity of a range of copper radiopharmaceuticals. A revised mechanism involving a delicate balance between cellular uptake, intracellular reduction, reoxidation, protonation and ligand dissociation is proposed. This mechanism accounts for observed differences in the reported cellular uptake and washout of related copper bis(thiosemicarbazonato) complexes. Three copper and zinc complexes have been characterised by X-ray crystallography and the redox chemistry of a series of copper complexes has been investigated by using electronic absorption and EPR spectroelectrochemistry. Time-dependent density functional theory (TD-DFT) calculations have also been used to probe the electronic structures of intermediate species and assign the electronic absorption spectra. DFT calculations also show that one-electron oxidation is ligand-based, leading to the formation of cationic triplet species. In the absence of protons, metal-centred one-electron reduction gives the reduced anionic copper(I) species, [CuIATSM](-), and for the first time it is shown that molecular oxygen can reoxidise this anion to give the neutral, lipophilic parent complexes, which can wash out of cells. The electrochemistry is pH dependent and in the presence of stronger acids both chemical and electrochemical reduction leads to quantitative and rapid dissociation of copper(I) ions from the mono- or diprotonated complexes, [CuIATSMH] and [Cu(I)ATSMH2]+. In addition, a range of protonated intermediate species have been identified at lower acid concentrations. The one-electron reduction potential, rate of reoxidation of the copper(I) anionic species and ease of protonation are dependent on the structure of the ligand, which also governs their observed behaviour in vivo.  相似文献   

6.
Crystal structures of the copper(I) complexes 1(X), 2, and 3 of a series of tridentate ligands L1(X), L2, and L3, respectively (L1(X): p-substituted derivatives of N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine; X=H, Me, OMe, Cl, NO(2); L2: N,N-bis[2-(2-pyridyl)ethyl]-2-methyl-2-phenylethylamine; L3: N,N-bis[2-(2-pyridyl)ethyl]-2,2-diphenylethylamine) were solved to demonstrate that all the copper(I) complexes involve an eta(2) copper-arene interaction with the phenyl ring of the ligand sidearm. The Cu(I) ion in each complex has a distorted tetrahedral geometry consisting of the three nitrogen atoms (one tertiary amine nitrogen atom and two pyridine nitrogen atoms) and C(1)-C(2) of the phenyl ring of ligand sidearm, whereby the Cu-C distances of the copper-arene interaction significantly depend on the para substituents. The existence of the copper-arene interaction in a nonpolar organic solvent (CH(2)Cl(2)) was demonstrated by the observation of an intense MLCT band around 290 nm, and the magnitude of the interaction was evaluated by detailed analysis of the (1)H and (13)C NMR spectra and the redox potentials E(1/2) of the copper ion, as well as by means of the ligand-exchange reaction between the phenyl ring and CH(3)CN as an external ligand. The thermodynamic parameters DeltaH(o) and DeltaS(o) for the ligand-exchange reaction with CH(3)CN afforded a quantitative measure for the energy difference of the copper-arene interaction in the series of copper(I) complexes. Density functional studies indicated that the copper(I)-arene interaction mainly consists of the interaction between the d(z(2) ) orbital of Cu(I) and a pi orbital of the phenyl ring. The copper(I) complexes 1(X) reacted with O(2) at -80 degrees C in CH(2)Cl(2) to give the corresponding (micro-eta(2):eta(2)-peroxo)dicopper(II) complexes 4, the formation rates k(obs) of which were significantly retarded by stronger d-pi interaction, while complexes 2 and 3, which exhibit the strongest d-pi interaction showed significantly lower reactivity toward O(2) under the same experimental conditions. Thus, the d-pi interaction has been demonstrated for the first time to affect the copper(I)-dioxygen reactivity, and represents a new aspect of ligand effects in copper(I)-dioxygen chemistry.  相似文献   

7.
Binuclear copper, nickel and cobalt complexes of the Schiff-bases obtained by condensation of glycylglycine with acetylacetone, benzoylacetone, dibenzoylmethane and thenoyltrifluoroacetone were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, i.r., u.v.–vis. spectra, e.s.r., X-ray diffraction, t.g.a., d.t.a. and d.s.c. thermal analysis. All the complexes are non-electrolytes with low magnetic moments that indicate spin–spin or antiferromagnetic exchange interactions. Spectral properties support square planar and square pyramidal or trigonal bipyramidal structure provided by the N2O2 chromophores. E.s.r. spectra of the copper complex confirm the binuclear structure and the presence of magnetic interaction. Thermal studies supported the chemical formulation of these complexes and showed that they decompose in three to four steps depending on the type of ligand. Activation energies Ea and enthalpies ΔH, associated with the thermal decomposition of the complexes were calculated and correlated with the type of complexed metal. A mechanism for thermal decomposition is proposed for the complexes.  相似文献   

8.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   

9.
A naringenin Schiff-base ligand (H(3)L) and its copper(II) and zinc(II) complexes have been synthesized and characterized by elemental analyses, molar conductivities, (1)H NMR, IR spectra, UV spectra and thermal analyses. The DNA-binding properties of the Cu(II) and Zn(II) complexes have been investigated by fluorescence spectroscopy, ultraviolet spectroscopy and by viscosity measurements. The results indicate that complexes and ligand may bind to DNA by intercalation modes, but the binding affinity of the complexes is much higher than that of the ligand.  相似文献   

10.
A series of binucleating Uganda with fully conjugated π-systems have been synthesized. Homobinuclear copper(II) complexes of the form [(Cu(dien)ClO4)2L]-(ClO4)2, where dien is diethylenetriamine and L is binucleating ligand, were prepared. Mononuclear complexes, with structure similar to that of the preceeding compounds, [Cu(dien)L′(ClO4)](ClO4) were synthesized as reference compounds. The infrared spectra, elctronic spectra and magnetic properties were studied. The inductive effect, steric effect and the effect of the length of the conjugated π-system on the magnetic exchange interaction between the two copper ions are discussed. The electrochemical properties of these complexes were investigated by cyclic voltammetry. The copper ions showed the cooperative phenomena and a quasi-reversible sequential transfer of two electrons at the same potential.  相似文献   

11.
A novel bi-tetradentate polythioether ligand, 6,6-methylene-bis(5- mercapto-3-thiahexyl)-4,8-dithiaundecane-1, 11-dithiol (H4L) was synthesized, and its di- and tetranuclear copper(II) complexes were prepared, and characterized by elemental analyses, magnetic moments, 1H-n.m.r., i.r., and Uv/vis spectra. The i.r. data show that the ligand acts in a tetradentate manner and coordinates via one S atom of the thioether and thiol groups. The geometry of the metal chelates is discussed with the help of magnetic and spectroscopic measurements. The elemental analyses, stoichiometry, and spectroscopic data of the complexes indicate that the copper(II) ions are coordinated to the bi-dianion of the ligand. The function of the thiol ligand is to release protons to form copper(II) complexes, (Cu2L).  相似文献   

12.
Four new triphenylamine ligands with different substituents in the para position and their corresponding copper(II) complexes are reported. This study includes their structural, spectroscopic, magnetic, and electrochemical properties. The complexes possess a dinuclear copper(II) paddle-wheel core, a building unit that is also common in metal-organic frameworks. Electrochemical measurements demonstrate that the triphenylamine ligands and the corresponding complexes are susceptible to oxidation, resulting in the formation of stable radical cations. The square-wave voltammograms observed for the complexes are similar to those of the ligands, except for a slight shift in potential. Square-wave voltammetry data show that, in the complexes, these oxidations can be described as individual one-electron processes centered on the coordinated ligands. Spectroelectrochemistry reveals that, during the oxidation of the complexes, no difference can be detected for the spectra of successively oxidized species. For the absorption bands of the oxidized species of the ligands and complexes, only a slight shift is observed. ESR spectra for the chemically oxidized complexes indicate ligand-centered radicals. The copper ions of the paddle-wheel core are strongly antiferromagnetic coupled. DFT calculations for the fully oxidized complexes indicate a very weak ferromagnetic coupling between the copper ions and the ligand radicals, whereas a very weak antiferromagnetic coupling is found among the ligand radicals.  相似文献   

13.
The ligational behavior of 2-hydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone N-substituted thiosemicarbazones towards Ni(II) and Cu(II) ions has been investigated. The isolated complexes were identified by elemental analyses, molar conductance, magnetic moment, IR, UV-vis and ESR spectral studies. The IR spectra indicated that the investigated thiosemicarbazones lost the N(2) proton or the N(2) and OH protons and act as mononegative or binegative tridentate ligands. The ligands containing methoxy group facilitate the deprotonation of OH by resonance more than the SH. Most of the Ni(II) complexes measured subnormal magnetic moments due to square-planar+tetrahedral configuration and supported by the electronic spectra. The percentage of square-planar to tetrahedral was calculated and found in agreement with the ligand splitting energy (10Dq). Also, Cu(II) complexes measured subnormal values due to the interaction between copper centers; the lower the value the higher the interaction. It was found that the substitutent has a noticeable effect on the distortion of the complex. The ESR spectra of some solid Cu(II) complexes at room temperature exhibit g(parallel)>g( perpendicular)>2.0023 confirming a square-planar structure.  相似文献   

14.
3-Aminocoumarin (L) has been synthesized and used as a ligand for the formation of Cr(III), Ni(II), and Cu(II) complexes. The chemical structures were characterized using different spectroscopic methods. The elemental analyses revealed that the complexes where M=Ni(II) and Cu(II) have the general formulae [ML(2)Cl(2)], while the Cr(III) complex has the formula [CrL(2)Cl(2)]Cl. The molar conductance data reveal that all the metal chelates, except the Cr(III) one, are non-electrolytes. From the magnetic and UV-Visible spectra, it is found that these complexes have octahedral structures. The stability for the prepared complexes was studied theoretically using Density Function Theory. The total energy for the complexes was calculated and it was shown that the copper complex is the most stable one. Complexes were tested against selected types of microbial organisms and showed significant activities. The free radical scavenging activity of metal complexes have been determined by measuring their interaction with the stable free radical DPPH and all the compounds have shown encouraging antioxidant activities.  相似文献   

15.
Emission and UV-vis absorption spectra of (hydrotris(pyrazolyl)borato)(triphenylarsine)copper(I), (CuTpAsPh3), (hydrotris(pyrazolyl)borato)(triethylamine)copper(I), (CuTpNEt3), and (hydrotris(pyrazolyl)borato)(triphenylphosphine)copper(I), (CuTpPPh3), are reported. The spectra of the arsine complex contain low-energy bands (with a band maximum at 16,500 cm(-1) in emission and a weak shoulder centered at about 25,000 cm(-1) in absorption) that are not present in the corresponding spectra of the amine or phosphine complexes. The lowest energy electronic transition is assigned to ligand to ligand charge transfer (LLCT) with some contribution from the metal. This assignment is consistent with PM3(tm) molecular orbital calculations that show the HOMO to consist primarily of pi orbitals on the Tp ligand (with some metal orbital character) and the LUMO to be primarily antibonding orbitals on the AsPh3 ligand (also with some metal orbital character). The absorption shoulder shows a strong negative solvatochromism, indicative of a reversal or rotation of electric dipole upon excitation, and consistent with a LLCT. The trends in the energies of the electronic transitions and the role of the metal on the LLCT are discussed.  相似文献   

16.
测定了水杨醛天冬氨酸Cu(Ⅱ)配合物在室温和低温下吡啶中的溶液ESR谱,室温溶液谱观测到二级效应和弛豫效应,给予了理论解释,计算了弛豫参数;根据低温ESR波谱参数,计算了键参数,讨论了配合物的成键特性和稳定性。利用ESR法直接测定了水杨醛天冬氨酸席夫碱配体及其钢、锌、钻、镍配合物抗O2-性能,结果表明:配体和配合物均有抗O2-性能,配合物清除能力比配体强,其中铜配合物清除O2-能力最强。  相似文献   

17.
Three types of copper complexes as well as an oximate-bridged nickel complex with isonitrosoacetophenone 2-aminobenzoylhydrazone (H(2)L) have been prepared in ethanolic solution and characterized by elemental analyses, IR, (1)H NMR, UV-vis and magnetic susceptibility measurement. IR spectra show the ligand coordinates as a neutral, monoanionic and dianionic O,N,N-tridentate acylhydrazoneoxime ligand depending reaction conditions and metal salts employed. The elemental analyses results, spectroscopic and magnetic data are consistent with the formation of mononuclear copper complexes and binuclear complexes with both copper and nickel. The effects of varying pH and solvent on the absorption behavior of both ligand and complexes have been investigated. The extraction ability of acylhydrazoneoxime ligand has been examined by the liquid-liquid extraction of selected transition metal [Cu(2+), Ni(2+), Co(2+), Cr(3+), Hg(2+), Zn(2+), Cd(2+) and Mn(2+)] cations. The ligand shows strong binding ability toward copper(II) ion.  相似文献   

18.
Benzothiazole moiety has gained a lot of attention because of its importance as essential pharmacophore in the development of metal based drugs. Nickel(II) and copper(II) complexes of a benzothiazole based ligand, 2,2’‐bibenzo[d]thiazole (L1), synthesized by the reaction of benzothiazole‐2‐carbonylchloride and o‐aminothiophenol, is reported. The compounds were characterised by elemental and percentage metal analyses, spectroscopic (FTIR and UV–vis), 1H and 13C NMR, Mass spectra, thermal, magnetic moment and molar conductance analyses. The mass spectra, elemental and percentage metal composition of the metal complexes gave a 2:1 ligand to metal stoichiometric mole ratio. The spectral data showed that the ligand was coordinated to the metal ions through the nitrogen atoms of the benzothiazole moiety. The electronic spectra and magnetic susceptibility measurements showed that the nickel and copper complexes adopted square planar geometries. The ligand and its metal(II) complexes were screened against some drug resistant microbes and were found to exhibit varied degree of antimicrobial activities. The nickel complex was more active compared to ciprofloxacin against Staphylococcus aureus and Bacillus cereus. Similarly, the antioxidant potential of the ligand was evaluated. The ligand is a better ferrous ion chelating agent compared to 1,10‐phenanthroline and 2,2‐bipyridine. The ligand and its complexes exhibited good antimicrobial and Fe2+ chelating properties making them probable compounds of interest in antibiotic and antioxidant drug researches.  相似文献   

19.
Four mixed-ligand copper(II) complexes containing the rigid bidentate nitrogen ligand bis[N-(p-tolyl)imino]acenaphthene (abb. p-Tol-BIAN) ligand are reported. These complexes, namely [Cu(p-Tol-BIAN)(2)](ClO(4))(2)1, [Cu(p-Tol-BIAN)(acac)](ClO(4)) 2, [Cu(p-Tol-BIAN)Cl(2)] 3 and [Cu(p-Tol-BIAN)(AcOH)(2)](ClO(4))(2)4 (where acac, acetylacetonate and AcOH, acetic acid) have been prepared and characterized by elemental analysis, spectroscopic, magnetic and molar conductance measurements. ESR spectra suggest a square planar geometry for complexes 1 and 2. In complexes 3 and 4, a distorted tetrahedral arrangement around copper(II) centre was suggested. Solvatochromic behavior of all studied complexes indicates strong solvatochromism of their solutions. The observed solvatochromism is mainly due to the solute-solvent interaction between the chelate cation and the solvent molecules. Thermal properties and decomposition kinetics of all complexes are investigated. The kinetic parameters (E, A, Delta H, Delta S and Delta G) of all thermal decomposition stages have been calculated using the Coats-Redfern and other standard equations.  相似文献   

20.
One-electron reduction inverts the helicity of copper complexes formed from derivatives of S-methylcysteine and methioninol. The change in conformation of the organic ligand is followed in the exciton-coupled circular dichroism (ECCD) spectra of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号