首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Chloro-dimethylaminosulfonium Salts. Preparation and I. R. Spectra By reaction of bis-dimethylamino-mono- resp. -disulfane with a mixture of chlorine/antimony(V) chloride the chloro dimethylaminosulfonium hexachloroantimonates(V) [(CH3)2N]2SCISbCl6? (I) and (CH3)2NSCI2SbCl6? (II) are yielded. The i. r. spectra of these compounds were measured and assigned.  相似文献   

2.
Studies on the Reactivity of Antimony Pentachloride. III. The Reaction of Antimony(V) Chloride and Methylisocyanate Methylisocyanate CH3NCO reacts with SbCl5 in boiling CCl4 by an insertion-reaction to a product of the formula C5H6Cl9N2O2Sb I, which has the chlorformamidinium-structure (Cl? C(O)? N(CH3)? CCl? N(CH3)? C(O)? Cl)⊕SbCl6?. Hydrolysis of I yields the heterocycle C5H6N2O4 II. The reaction with methanol gives (CH3? NH? CCl? NH? CH3)⊕SbCl6? III and (CH3? NH? CCl? N(CH3)? C(O)? OCH3)⊕SbCl6? IV. The i.r. and Raman spectra of the compounds I, III and IV are discussed.  相似文献   

3.
Reaction Products of Chloromethoxiphosphines and Antimony (V) Chloride. Vibrational Spectra of the 1:1-adducts of Methoxiphosphoryl Compounds and Antimony (V) Chloride Chloromethoxiphosphines react with antimony(V) chloride in a redox process to yield the chloromethoxiphospllonium hexachloroantimonates(V) (CH3O)3PCl2+SbCl6? (II) and CH3OPCl3+SbCl6? (III). II, III, (CH3O)3PCl+SbCl6?(1) and (CH3O)4P+SbCl6? eliminate easily methyl chloride and give the addition compounds OP(OCH3)3·SbCl5(IV), OPCl(OCH3)2 · SbCl5 (V), OPCl2(OCH3)·SbCl5 (VI) and OPCl3·SbCl5 (VII). The vibrational spectra of IV, V nnd VI are discussed.  相似文献   

4.
l-Hydroxo/alkoxo-l-oxo-l-sulfonato-jO:jO'-bis[trichloroantimony(V)] Compounds. Binuclear Antimony(V) Complexes with Sulfonate Groups as bridging Ligands Sulfonic acids react with antimony(V) chloride and water and water/alcohol resp. dependent of the molar ratios yielding Cl3SbO(OH)(O2S(O)CH3)SbCl3 ( 1 ), Cl3SbO(OH)· (O2S(O)CF3)SbCl3 ( 3 ) the monohydrate Cl3SbO(OH)· (O2S(O)CH3)SbCl3·H2O ( 2 ) and the compounds Cl3SbO(OR')(O2S(O)CF3)SbCl3 ( 4 : R'=CH3; 5 : R'=C2H5) and Cl3SbO(OCH3)(O2S(O)C2H5)SbCl3 ( 6 ) resp. The crystal and molecular structures of 1 to 3 , 5 and 6 are determined. 1 and 3 are associated by hydrogen bonds to dimers and crystallize monoclinic ( 1 : P21/c; 3 : P21/n). 2 is a hydroxonium salt H3O+[Cl3SbO2(O2S(O)CH3)SbCl3] with strong hydrogen bonds between cations and anions and crystallizes triclinic (P1). 5 and 6 crystallize monoclinic ( 5 : P21/m; 6 : P21/c). In 1 and 3 to 6 there is an intramolecular reorientation or an intermolecular exchange of protons and R' groups in solution. The NMR spectra are discussed.  相似文献   

5.
The diaquahydrogenium hexachloroantimonates(V) H5O2+SbCl6-(I) and D5O2+SbCl6-(II) were prepared by the reaction of SbCl5 · 2H2O and SbCl5 · 2D2O with HCl or DCl respectively. The infrared spectra were assigned. In addition ab initio calculations were performed on the system H5O2+, for which frequencies and IR absorbances of three mutually perpendicular modes of the H-bonded proton and D-bonded deuteron were calculated.  相似文献   

6.
SbCl3Br2 may be stabilized by electron donors. Crystalline 1:1 adducts with diethyl ether, tetrahydrofurane, triphenylphosphine oxide and -sulphide were isolated. Their bonding properties, regarding the donor strengths, are discussed. The tetrahydrofurane adduct takes up three molecules of CCl4 in the presences of CCl4 · SbCl3Br2 · OP(C6H5)3 is converted in introbenzene into SbCl3Br2 · O2NC6H5 which, at room temperature, transforms in the course of 15 hours to heteropolar compounds of the general formula [SbClnBr4?n · (O2NC6H5)2]+[SbClmBr6?m]?, with m + n = 6 and n = 1, 2, 3, 4.  相似文献   

7.
dh-μ-Carboxilato-e-μ-hydroxo-f-μ-oxo-bis[trichloroantimonies(V)] Structure and Spectroscopic Investigations The title compounds can be prepared by reaction of SbCl5 · H2O and RCOOH (R ? CF3, CCl3, CHCl2, CH2Cl, CH3, CH3CH2, (CH3)2CH, H) or by reaction of H5O2+SbCl6? and RCO2SbCl4 in good yields. 1H-NMR investigations proove that there is a rapid exchange between the components in the reaction mixture. The vibrational spectra are discussed in view of the CO2 vibrations and hydrogen bonding. The crystal and molecular structure of dh-μ-Trichloroacetato-e-μ-hydroxo-f-μ-oxo-bis[trichloroantimony(V)] is determined by X-ray analysis.  相似文献   

8.
Studies on Water Adducts of Antimony(V) Chloride Antimony(V) chloride gives four solid adducts of sbCl5 · nH2O I-IV (n = 1, 2, 3, 4) at room temperature. In the solid state I is oligomer by hydrogen bridges. In II, III, and IV are besides the adducts ionic products of the constitution H+(H2O)n] SbCl5OH? (n = 1, 2, 3). I and II reacts with sodium chloride to yield sodium hexachloroantimonate(V) · 1 resp. 2 H2O. The vibrational spectra were discussed.  相似文献   

9.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

10.
One-Electron Redox Reactions of Octaphenyl[4]radialene: Generation and ESR/ENDOR Characterisation of Its Radical Anion and Radical Cation The cyclovoltammograms of octaphenyl[4]radialene in DMF or THF at room temperature disclose each two quasireversible reduction and oxidation potentials at ?1.4 V/?1.7 V and +0.7 V/+0.9 V. Accordingly, both the radical anion and the radical cation can be generated: Ph8C by K metal mirror reduction of a [2.2.2]cryptand containing THF solution, and Ph8C by TI3⊕(?OOCCF3)3 oxidation in H2CCl2. Their ESR/ENDOR and General Triple spectra differ considerably in the number of resolved 1H couplings (M·?: 5 and M·⊕: 3) as well as in their spectral widths (M·?: a1H 0.090 to 0.017 mT; M·⊕: a1H 0.066 to 0.023 mT) suggesting different changes in the D2d structure of the neutral molecule on electron uptake or extrusion.  相似文献   

11.
The kinetics of polymerization of 1, 3-dioxolane (DiOX) initiated by (C2H5)3O+SbCl6 and SbCl5 has been studied and the elementary stages of the process have been considered. The polymerization of DiOX by (C2H5)3O+SbCl6-is shown to proceed at a steady rate to high conversion. A constant concentration of active centers in the system is maintained due to the equal rates of decomposition of active centers and disproportionation. The nonsteady-state character of DiOX polymerization initiated by SbCl5is associated with a relatively lower stability of the counter-ion SbCl5 OR? compared with SbCl6. The initiation of DiOX polymerization by (C2H5)3O+SbCl6 proceeds without hydride-transfer reactions, and the concentration of active centers in the system is determined not by processes taking place in the initiation stage, but by the existence of a definite kind of equilibrium with the participation of active centers.  相似文献   

12.
Sulfoximide and Sulfoximidium Salts – Structures and Hydrogen Bonding In the solid state dimethylsulfoximide ( 1 ) (orthorhombic; space group Pbca; a = 577.8, b = 931.2 and c = 1645.6 pm) makes intermolecular N? H ? N hydrogen bonds. The hydrogen halide salts (CH3)2S(O)NH2+Hal? (( 2 ), Hal??Cl?; ( 4 ), Hal??Br?) reacts with metal halides to yield (CH3)2S(O)NH2+MHal with the complex anions (( 5 ), MHal?SbCl4?; ( 6 ), MHal?SbCl52?; ( 7 ), MHal?SbCl6?; ( 8 ), MHal?SbBr52?; ( 9 ), MHal?AlCl4?). 2 crystallizes from ethanol (96%) as [(CH3)2S(O)NH2+Cl?]2 · H2O ( 3 ). The structures of 3 (monoclinic; space group P21/c; a = 917.0, b = 1344.7, c = 1080.8 pm and β = 103.8°; Z = 10), 4 (orthorhombic; space group Pbcn; a = 1028.9, b = 1132.6, c = 1074.1 pm; Z = 8) and 6 (monoclinic; space group C2/c; a = 2041.1, b = 1101.4, c = 3365.6 pm and β = 153.8°; Z = 8) are determined by X-ray analysis. In 6 Sb is coordinated in a distorted octahedra by 6 Cl in three short (mean 245,5 pm; SbCl3) and three long distances (291 to 299 pm; Cl?). Two of the chloride ions connect the Sb atoms to infinite Sb …? Cl …? Sb chains. Except for 7 and 9 there are bridges between the NH2 groups and the halide ions. The NH valence vibrations are discussed in view of hydrogen bonding.  相似文献   

13.
Indenylvanadium(V) Compounds Synthesis, Structure, and NMR Spectroscopic Studies Syntheses of the indenylvanadium(V)compounds are described: tC4H9N = V(η5‐C9H7)Cl2 ( 1 ), tC4H9N = V(η5‐C9H7)Br2 ( 2 ), tC4H9N = V(η5‐C9H7)(OtC4H9)Cl ( 3 ), tC4H9N = V(η1‐C9H7)(OtC4H9)2 ( 4 ), tC4H9N = V(η1‐C9H7)2(OtC4H9) ( 5 ), tC4H9N = V(η1‐C9H7)(η5‐C5H5) · (OtC4H9) ( 6 ), tC4H9N = V(η1‐C9H7)(η5‐C5H5)(NHtC4H9) ( 7 ). All compounds were totally characterized by spectroscopic methods (MS; 1H, 13C, 51V NMR), 3 by single crystal X‐ray diffraction. For 6 the presence of the diastereomeres RR/SS and RS/SR was shown by NMR spectroscopy. The chlorovanadate (IV) complex [NHC4H9]2+[(tC4H9N)7V7 · (μ‐Cl)14Cl2]2– has been obtained by decomposition of 1 in solution; the crystal structure indicates a wheel structure with hydrogen bonds between the tert‐butylammonium cations and the complex anion.  相似文献   

14.
The electrochemical behavior of SbCl3 and SbCl5 is studied in nitromethane. SbCl3 and SbCl5 are Cl? acceptors, giving respectively SbCl4/? (log K formation=4), and SbCl6 (log K formation=15). Formal potentials of systems are determined. SbCl5 reacts with HCl, giving the solvated proton HS/+ and SbCl6/?; it is not possible to determine the formal potential of the hydrogen electrode, using HSbCl6 as an acid, because the reduction of Sbv occurs before the reduction of HS/+.  相似文献   

15.
Binuclear Antimony(V) Complexes with Bridging Diphenylphosphato Ligands The binuclear antimony(V) complexes Cl3Sb(O)[(C6H5O)2PO2]2SbCl3 ( 1 ), Cl3Sb(O)[(C6H5O)2PO2](OCH3)SbCl3 ( 2 ), Cl3Sb(O)[(C6H5O)2PO2](OH)SbCl3 ( 3 ) and Cl4Sb[(C6H5O)2PO2]2SbCl4 ( 4 ) are prepared by reaction of diphenylphosphoric acid with antimony(V) chloride, water and methanol in different molar ratios. The progress of the reactions was controlled by the 31P-NMR signals. 1 crystallizes triclinic in the space group P1 with a = 918.8, b = 1312.9, c = 1395.8 pm, α = 91.91, β = 101.36, γ = 95.90° and Z = 2. 2 to 4 crystallize in monoclinic space groups: 2 : C2/c, a = 2753.4, b = 1156.1, c = 1476.7 pm, β = 98.01° and Z = 8; 3 : P21/c, a = 1234.8, b = 1471.8, c = 1263.4 pm, β = 107.15° and Z = 4; 4 : P21/n, a = 1943.8, b = 940.8, c = 2015.6 pm, β = 109.87° and Z = 4 resp. The NMR spectra are discussed and some IR data are communicated.  相似文献   

16.
Hydrogen Bonds in Binuclear μ-Hydroxo-bis[trichloroantimony(V)] Complexes with Phosphate or Phosphonate Groups as Bridging Ligands Benzylphosphonic acid monoalkylesters react with antimony(V) chloride and water to yield Cl3SbO(OH)[(C6H5CH2)RPO2]SbCl3 · H2O ( 1 : R = OCH3; 2 : R = OC2H5). With difluoro phosphoric acid only Cl3SbO(OH)(F2PO2)SbCl3 ( 3 ) can be isolated. The crystal and molecular structures of 1 to 3 were determined. 1 and 2 both crystallizing orthorhombic in the space group Pnma are hydroxonium salts H3O+[Cl3SbO2((C6H5CH2)RPO2)SbCl3]. Strong hydrogen bridges link cations and anions to chains. One of the hydrogen atoms of the cation makes a weak but important OH/π interaction to the para C atom of the benzyl group. In 3 (monoclinic, P21/n) the molecules are connected by hydrogen bridges to fourfold δ and helices λ. In solution there is a rapid intermolecular exchange of protons. IR and NMR data are communicated and briefly discussed.  相似文献   

17.
Complex compounds of trivalent metal chlorides (AlCl3, CrCl3, FeCl3) are described, which had been obtained in a double complexation reaction in CCl4 as a solvent with nitro compounds and SbCl5:M III(C6H5NO2) m (SbCl6)3 (m=3,6),M 2 III(C6H5NO2)4(SbCl6)4 and Al(-C10H7NO2)3(SbCl6)3. Synthesis, analytical results and i.r. spectra are discussed.  相似文献   

18.
Te(OH)6 · 2Na3P3O9 · 6H2O, is hexagonal (P63/m) with a = 11,67(1), c = 12,12(1) Å, Z = 2 and Dx = 2,225 g/cm3. Te(OH)6 · K3P3O9 · 2H2O, is monoklin (P21/c) with a = 19,61(5), b = 7,456(1), c = 14,84(6) Å, = 108,01(4), Z = 4 and Dx = 2,506 g/cm3. Both compounds are the first examples of phosphate tellurates in which the anion phosphate is condensed to the ring anion P3O9. As in phosphate tellurates already described the phosphate groups are independent of the TeO6 octahedra.  相似文献   

19.
Structures of Ionic Di(arenesulfonyl)amides. 4. Cross‐Linking Lamellar Layers by O–H…O Hydrogen Bonds: Structures of MN(SO2C6H4‐4‐COOH)2 (M = K, Rb, Cs) Syntheses and low‐temperature X‐ray crystal structures are reported for MIN(SO2C6H4‐4‐COOH)2, where M = K (monoclinic, space group P21/c, Z = 4, Z′ = 1), M = Rb (monoclinic, P21, Z = 4, Z′ = 2), or M = Cs (monoclinic, P21/c, Z = 4, Z′ = 1). The three compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and N(SO2)2 groups and the outer regions are formed by the 4‐carboxy substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, K and Cs adopt irregular and chemically distinct [MN1O7] octacoordinations, whereas the independent Rb cations attain irregular nonacoordinations of type [RbN2O7] or [RbO9] respectively. The crystal packings of the compounds are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic acid groups, resulting in a dense array of cyclic (COOH)2 motifs within the interlamellar regions.  相似文献   

20.
Adducts of Phosphoryl Compounds and SbCl5 Preparation and IR Spectra of 1:1 Addition Compounds from Chlorodimethylamino- resp. Chlorodimethylaminomethoxiphosphoryl Compounds and Antimony(V) Chloride The addition compounds (CH3O)2[(CH3)2N]PO · SbCl5 ( II ), (CH3O)[(CH3)2N]2PO · SbCl5 ( III ), [(CH3)2N]3PO · SbCl5 ( IV ), Cl2[(CH3)2N]PO · SbCl5 ( VI ), Cl[(CH3)2N]2PO · SbCl5 ( VII ), and Cl(CH3O)[(CH3)2N]PO · SbCl5 ( VIII ) are prepared by reaction of the phosphoryl compounds with antimony(V) chloride. The influence of the Lewis acid to the bonds of the phosphoryl compounds is discussed. The 31P-n.m.r. data of the adducts are communicated and compared with those of the free phosphoryl compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号