共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Bignardi F. Fvangelisti P. Schenone A. Bargagna 《Journal of heterocyclic chemistry》1972,9(5):1071-1075
The reaction of dichloroketene with N,N-Disubstituted 2-aminomethylenecyclopentanones, cyclohexanones, cycloheptanones and cyclooctanones gave the 1,4-cycloadducts, namely N,N-Disubstituted 3,3-dichloro-4-amino-5,6-polymethylene-3,4-dihydro-α-pyrones. The structures of these products were determined by uv, ir and nmr spectral data, as well as by dehydrochlorination of the adduct, 3,3-dichloro-4-diphenylamino-5,6-tetramethylene-3,4-dihydro-α-pyrone, which led to 3-chloro-4-diphenylamino-5,6-tetramethylene-α-pyrone. The by-product of the cycloaddition reaction was the N,N-Disubstituted dichloroacetamide, the formation of which varies according to the substituents on the nitrogen atom. 相似文献
2.
The polar 1,4-cycloaddition of dichloroketene to N,N-disubstituted (E)-6-aminomethylene-7,8-dihydro-(2-methyl)(2-phenyl)quinazolin-5(6H)-ones III , prepared in good yields from 7,8-dihydro-(2-methyl)-(2-phenyl)quinazolin-5(6H)-ones via their 6-hydroxymethylene derivatives I and II , gave in satisfactory to excellent yields N-N-disubstituted 4-amino-3,3-dichloro-3,4,5,6-tetrahydro-(8-methyl)(8-phenyl)-2H-pyrano- [2,3,-f]quinazolin-2-ones IV , which are derivatives of the new heterocyclic system pyrano[2,3-f]quinazoline. This cycloaddition occurred both in the case of aliphatic and aromatic N-substitution only with 2-phenyl-enaminones III , whereas with 2-methyl derivatives III the reaction took place only in the case of aromatic N-monosubstitution. Dehydrochlorination of IV with DBN afforded, generally in excellent yields, N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-(8-methyl)(8-phenyl)-2H-pyrano[2,3-y]quinazolin-2-ones, which were dehydrogenated with DDQ to give N,N-disubstituted 4-amino-3-chloro-(8-methyl)(8-phenyl)-2H-pyrano[2,3-f]quinazolin-2-ones in excellent yields. 相似文献
3.
Alberto Bargagna Pietro Schenone Mario Longobardi 《Journal of heterocyclic chemistry》1985,22(6):1471-1473
1,4-Cycloaddition of phenylchloroketene (prepared in situ from α-chlorophenylacetyl chloride and triethyl-amine) to a number of N,N-disubstituted (E)-2-aminomethylenecyclohexanones gave the corresponding adducts, namely N,N-disubstituted 4-amino-3-chloro-3,4,5,6,7,8-hexahydro-2H-1-benzopyran-2-ones III in the case of aliphatic N,N-disubstitution or aromatic N-monosubstitution. Purification of III was possible only in the case of IIIh (NR2 = NMePh), therefore they were dehydrochlorinated in situ with DBN to give the title compounds in moderate overall yields. 相似文献
4.
Alberto Bargagna Pietro Schenone Filippo Evangelisti 《Journal of heterocyclic chemistry》1979,16(1):93-96
The dipolar 1,4-cycloaddition of dichloroketene to N,N-disubstituted 3-amino-1-phenyl-2-propene-1-onesled directly to N,N-disubstituted 4-amino-3-chloro-6-phenyl-2H-pyran-2-ones only in the case of an usual aliphatic N,N-disubstitution. In the case of partial or full aromatic N-substitution, N,N-disubstituted 4-amino-3,3-dichloro-3,4-dihydro-6-phenyl-2H-pyran-2-ones were instead obtained, which were dehydrochlorinated with DBN to the corresponding 4-amino-3-chloro-6-phenyl-2H-pyran-2-ones. 相似文献
5.
Alberto Bargagna Pietro Schenone Mario Longobardi 《Journal of heterocyclic chemistry》1986,23(4):1067-1070
1,4-Cycloaddition of phenylchloroketene to N,N-disubstituted 2-aminomethylene-3,4-dihydro-1(2H)naphthalenones gave the corresponding adducts, namely N,N-disubstituted 4-amino-3-chloro-3,4,5,6-tetrahydro-3-phenyl-2H-naphtho[1,2-b]pyran-2-ones II, in the case of aliphatic N,N-disubstitution or aromatic N-monosubstitution. Apart from IIf (NR2 = NMePh), adducts II were unstable and were dehydrochlorinated in situ with DBN to give N,N-disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-naphtho[1,2-b]pyran-2-ones III in fair overall yields. Compounds III were dehydrogenated with Pd/C in boiling p-cymene to afford the title compounds generally in high yields. 相似文献
6.
Cycloaddition of dichloroketene to N,N-disubstituted 6-aminomethylene-5,6-dihydro-2-phenylbenzothiazol-7-(4H)ones gave in good yield N,N-disubstituted 4-amino-3,3-dichloro-3,4,5,6-tetrahydro-8-phenyl-2H-pyrano[3,2-g]benzothiazol-2-ones II, which are derivatives of the new heterocyclic system 2H-pyrano[3,2-g]benzothiazole. Dehydrochlorination with triethylamine of II afforded N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-8-phenyl-2H-pyrano[3,2-g]benzothiazol-2-ones III in good to moderate yield. The dimethylamino adduct was dehydrochlorinated in high yield by refluxing in toluene, whereas the diisopropylamino adduct gave in low yield 6-(2,2-dichloroethylidene)-5,6-dihydro-2-phenylbenzothiazol-7-(4H)one with the triethylamine treatment. The dehydrochlorinated product IIId (NR2 = pyrrolidino) was obtained directly in low yield by cycloaddition of dichloroketene to the corresponding enaminone. Full aromatisation of IIIa,g [NR2 = N(CH3)2 and N(CH3)C6H5, respectively] to the corresponding N,N-disubstituted 4-amino-3-chloro-8-phenyl-2H-pyrano-[3,2-g]benzothiazol-2-ones was accomplished with DDQ in refluxing benzene. 相似文献
7.
Victor J. Bauer Helen H. Ong Raymond W. Kosley 《Journal of heterocyclic chemistry》1982,19(5):1069-1072
The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-thiopyran] ring system ( 2a ) has been prepared from o-bromobenzoic acid. The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-pyran] ring system ( 3a ) has been prepared from 2-bromobenzhydrol methyl ether. Several 3-(dimethylaminoalkyl) derivatives of both 2a and 3a were prepared by lithiation followed by alkylation. 相似文献
8.
Luisa Mosti Pietro Schenone Giulia Menozzi Fernando Sancassan Francarosa Baccichetti Franco Benetollo Gabriella Bombieri 《Journal of heterocyclic chemistry》1988,25(2):407-413
1,4-Cycloaddition of phenylchloroketene to N,N-disubstituted 5-aminomethylene-6,7-dihydrobenzo[b]- furan-4(5H)-ones gave the corresponding adducts, namely N,N-disubstituted 4-amino-3-chloro-3,4,5,6-tetra- hydro-3-phenyl-2H-furo[2,3-h]-l-benzopyran-2-ones II , which were dehydrochlorinated with DBN to N,N-disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-furo[2,3-h]-1-benzopyran-2-ones III . Compounds III afforded the title compounds IV by dehydrogenation with DDQ. In the cycloaddition step, 3-phenylangelicin V , whose structure was confirmed by 1H-nmr shift reagents data and by X-ray crystal structure determination, was almost always formed, probably starting from II by dehydrochlorination, dehydrogenation and hydrogenolysis of the disubstituted amino group. Separation of V was achieved by alumina chromatography either in the cycloaddition step or, in most cases, in the dehydrochlorination step. 3-Phenylangelicin crystallizes in the trigonal system, space group R3, with cell parameters (hexagonal axes) a = b = 41.021(10), c = 3.888(2) Å. The angelicin moiety forms a dihedral angle of 42.1(1)° with the phenyl substituent. Disordered solvent molecules of ethyl acetate are clathrated in channels in the direction of the crystallographic axis c. 相似文献
9.
1,2-Epoxycarotenoids Isolation of 1′,2′-Epoxy-1′,2′-dihydro-ε,ψ-carotene from a ‘Delta Mutant’ Tomato From ‘Delta Mutant’ tomatoes, optically active 1′,2′-epoxy-1′,2′-dihydro-ε,ψ-carotene ( 7 ) was isolated. According to the CD data, the configuration is 6R and presumably 2′S. 相似文献
10.
Cycloaddition of dichloroketone to N,N-disubstituted (E)-4-aminomethylene-3,4-dihydro-1-benzoxepin-5(2H)-ones gave N,N-disubstituted 4-amino-3,3-dichloro-3,4,5,6-tetrahydro-2H-pyrano[3,2-d]-1-benzoxepin-2-ones II, which are derivatives of the new heterocyclic system 2H-pyrano[3,2-d]-1-benzoxepin. Dehydrochlorination with triethylamine of II afforded N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-2H-pyrano-[3,2-d]-1-benzoxepin-2-ones III in good to moderate yields. In the triethylamine treatment of IIh (NR2 = diphenylamino), 3-chloro-5,6-dihydro-2H-pyrano[3,2-d]-1-benzoxepin-2-one was isolated in low yield near to IIIh, whereas IIc (NR2 = diisopropylamino) gave in low yield 4-diisopropylamino-5,6-dihydro-2H-pyrano(3,2-d)-1-benzoxepin-2-one. 相似文献
11.
Alberto Bargagna Sergio Cafaggi Pietro Schenone 《Journal of heterocyclic chemistry》1980,17(3):507-511
Cycloaddition of dichloroketene to N,N-disubstituted 1-amino-4-methyl-1-penten-3-ones and 1-amino-4,4-dimethyl-1-penten-3-ones occurred in moderate to fair yield only in the case of aromatic N-substitution to give N,N-disubstituted 6-alkyl-4-amino-3,3-dichloro-3,4-dihydro-2H-pyran-2-ones, which were dehydrochlorinated with DBN to afford in good yield N,N-disubstituted 6-alkyl-4-amino-3-chloro-2H-pyran-2-ones. In the case of aliphatic N,N-disubstitution, cyclo-addition led directly to 6-alkyl-4-dialkylamino-3-chloro-2H-pyran-2-ones only for N,N-disubstituted 1-amino-4,4-dimethyl-1-penten-3-ones. The reaction between 1-dimethylamino-4-methyl-1-penten-3-one and dichloroketene gave 3-chloro-4-dimethylamino-3,6-dihydro-6-isopropylidene-2H-pyran-2-one in low yield. 相似文献
12.
Alberto Bargagna Pietro Schenone Francesco Bondavalli Mario Longobardi 《Journal of heterocyclic chemistry》1982,19(2):257-261
Cycloaddition of dichloroketene to N,N-disubstituted (E)-amino-5-methyl-1,4-hexadien-3-ones IV and (E,E)-1-amino-5-phenyl-1,4-pentadien-3-ones V occurred in moderate to good yield only in the case of aromatic N-substitution to give N,N-disubstituted 4-amino-3,3-dichloro-3,4-dihydro-6-(2-methyl-l-propenyl) (2-phenylethenyl)-2H-pyran-2-ones, which were dehydrochlorinated with DBN to afford in good yield N,N-disubstituted 4-amino-3-chloro-6-(2-methyl-propenyl)(2-phenylethenyl)-2H-pyran-2-ones. In the case of aliphatic N,N-disubstitution (dimethylamino group) of enaminones IV and V, the Cycloaddition led directly in low yield to 3-chloro-4-dimethylamino-6-(2-methyl-l-propenyl)(2-phenylethenyl)-2H-pyran-2-ones. 相似文献
13.
1,4-Cycloaddition of dichloroketene to a number of N,N-disubstituted (E)-4-amino methylene-3,4-dihydro-[1]benzothiepin-5(2H)-ones gave in excellent yield N,N-disubstituted 4-amino-3,3-dichloro-3,4,5,6-tetrahydro-2H-[1]benzothiepino[5,4-b]pyran-2-ones III, which are derivatives of the 2H-[1]benzothiepino[5,4-b]pyran system. Dehydrochlorination of III with DBN afforded N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-2H-[1]-benzothiepino[5,4-b]pyran-2-ones, generally in excellent yield. 相似文献
14.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2]. 相似文献
15.
Peter Uebelhart Andreas Baumeler Andreas Haag Roland Prewo Jost Hans Bieri Conrad Hans Eugster 《Helvetica chimica acta》1986,69(4):816-834
Optically Active 4,5-Epoxy-4,5-dihydro-α-ionones; Synthesis of the Stereoisomeric 4,5:4′,5′-Diepoxy-4,5,4′,5′-tetrahydro-?,?-carotenes and the Steric Course of their Hydrolysis We prove that epoxidation with peracid of α-ionone, contrary to a recently published statement, predominantly leads to the cis-epoxide. Acid hydrolysis affords a single 4,5-glycol whose structure, established by an X-ray analysis, shows that oxirane opening occurred with inversion at the least substituted position (C(4)). Stable cis-and trans-epoxides are prepared by epoxidation of the C15-phosphonates derived from α-ionone. Both the racemic and optically active form are used for the synthesis of the 4,5:4′,5′-diepoxy-4,5,4′,5′-tetrahydro-?,?-carotenes having the following configuration in the end groups: meso-cis/cis, meso-trans/trans, rac-cis/trans, rac- and (6R, 6′ R)-cis/cis, rac- and (6R, 6′R)-trans/trans, rac- and (6R, 6′R)-cis/trans, and (6R, 6′ R)-cis/?. Acid hydrolysis of the cis/cis-epoxycarotenoids under relatively strong conditions occurs again with inversion at C(4)/C(4′) in case of the cis/cis-epoxycarotenoids, but at C(5)/C(5′) in case of the trans/trans-epoxycarotenoids. An independent synthesis of this 4,5,4′,5′-tetrahydro-?,?-carotene-4,5,4′,5′-tetrol is presented. The irregular results of the oxirane hydrolysis are explained by assumption of neighbouring effects of the lateral chain. 400-Mz-1H-NMR data are given for each of the stereoisomeric sets. In the visible range of the CD spectra, the (6R, 6R′)-epoxycarotenoids compared with (6R, 6R′)-?,?-carotene exhibit an inversion of the Cotton effects. 相似文献
16.
Carotenoids with 7-Oxabicyclo[2,2.1]heptyl End Groups. Attempted Synthesis of Cycloviolaxanthin ( = (3S,5R,6S,3′S,5′R,6′R)-3,6:3′,6′- Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotin-5,5′-diol) Starting from our recently described synthon (+)- 24 , the enantiomerically pure 3,6:4,5:3′,6′:4′,5′-tetraepoxy-4,5,4′,5′-tetrahydro-ε,ε-carotene ( 34 ) and its 15,15′-didehydro analogue 32 were synthesized in eleven and nine steps, respectively (Scheme 4). Chiroptical data show, in contrast to the parent ε,ε-carotene, a very weak interaction between the chiral centers at C(5), C(5′), C(6), C(6′), and the polyene system. Diisobutylaluminium hydride reduction of 32 lead rather than to the expected 15,15′-didehydro analogue 35 of Cycloviolaxanthin ( 8 ), to the polyenyne 36 (Scheme 5). We explain this reaction by an oxirane rearrangement leading to a cyclopropyl ether followed by a fragmentation to an aldehyd on the one side and an enol ether on the other (Scheme 6). This complex rearrangement includes a shift of the whole polyenyne chain from C(6), C(6′) to C(5), C(5′) of the original molecule. 相似文献
17.
18.
Karl Schnafinger Christine M. Yasenchak Anne Vollman Helen H. Ong 《Journal of heterocyclic chemistry》1988,25(2):535-537
A series of structurally novel 7,8,9,10-tetrahydropyrido[3′,4′:4,5]pyrrolo[2,3-c,]quinolines, 4a-c , were synthesized via a facile Fischer indole cyclization from the appropriately substituted hydrazinoquinolines 2a-c . Acetamides 4a,c were hydrolyzed to 5a,b and further converted to tertiary amines 6a-c . Potent antihypertensive activity has been observed with a number of the title compounds as well as the intermediate 3a . 相似文献
19.
Keitaro Ishii Terry A. Lyle W. Bernd Schweizer Bruno Frei 《Helvetica chimica acta》1982,65(2):595-599
On 1n,π*-excitation, the title compound 2 undergoes a photoinduced intramolecular [4 + 2]-cycloaddition affording the tetracyclic enol ether 3 as the only product in 79% yield. The assigned structure of 3 was confirmed by its conversion to the p-nitrobenzoate 6 whose structure was determined by X-ray analysis. 相似文献
20.
Luisa Mosti Pietro Schenone Giulia Menozzi Giovanni Romussi 《Journal of heterocyclic chemistry》1982,19(5):1057-1059
The polar 1,4-cycloaddition of sulfene to N,N-disubstituted (E)5-aminomethylene-6,7-dihydrobenzo[b]-thiophen-4(5H)ones II gave in excellent yield and only in the case of aliphatic N-substitution, N,N-disubstituted 4-amino-3,4,5,6-tetrahydrothieno[2,3-h]-1,2-benzoxathiin 2,2-dioxides III, which are derivatives of the new heterocyclic system thieno[2,3-h]-1,2-benzoxathiin. Dehydrogenation with DDQ of cycloadducts IIIa-d was successful only in the case of IIIa (NR2 = dimethylamino) to give in low yield 4-dimethylamino-3,4-dihydrothieno[2,3-h]-1,2-benzoxathiin 2,2-dioxide. 相似文献