首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High molecular weight copolyesters were prepared by the acidolysis of poly(ethylene terephthalate) with p-acetoxybenzoic acid and polycondensation through the acetate and carboxyl groups. The mechanical properties of the injection-molded copolyesters containing 40–90 mole- % p-hydroxybenzoic acid (PHB) were highly anisotropic and dependent upon the PHB content, polyester molecular weight, injection-molding temperature, and specimen thickness. As the injection-molding temperature increased and the specimen thickness decreased, the tensile strength, stiffness, and Izod impact strength increased when measured along the direction of flow of the polymer melt, and the coefficient of thermal expansion was zero. In some compositions these properties were superior to those of commercial glass fiber reinforced polyesters. Maximum tensile strengths, flexural moduli, notched Izod impact strengths, and minimum melt viscosities were obtained with polyesters containing 60–70 mole-% PHB. Higher oxygen indicies (39-40) and heat deflection temperatures (150-220°C) were obtained with 80–90 mole-% PHB.  相似文献   

2.
Mixtures of the dimethyl esters of adipic acid and 2,3:4,5‐di‐O‐methylene‐galactaric acid (Galx) were made to react in the melt with either 1,6‐hexanediol or 1,12‐dodecanediol to produce linear polycyclic copolyesters with aldarate unit contents varying from 10 up to 90 mole %. The copolyesters had weight–average molecular weights in the ~35,000–45,000 g mol?1 range and a random microstructure, and were thermally stable up to nearly 300 °C. They displayed Tg in the ‐50 to ‐7 °C range with values largely increasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 20 and 90 °C but only those made from 1,12‐dodecanediol were able to crystallize from the melt at a crystallization rate that decreased as the contents in the two comonomers approached each other. Copolyesters containing minor amounts of galactarate units adopted the crystal structure characteristic of aliphatic polyesters but a new crystal polymorph was formed when the cyclic sugar units became the majority. Stress–strain parameters were sensitively affected by composition of the copolyesters with the mechanical behavior changing from flexible/ductile to stiff/brittle with the replacement of adipate units by the galactarate units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Polyanhydrides composed of the following diacids–sebacic acid, bis(p-carboxyphenoxy)propane, bis(p-carboxyphenoxy)hexane, isophthalic acid, 1,4-phenylene dipropionic acid, and dodecanedioic acid–were synthesized by a melt polycondensation process. Polymers of molecular weight up to 137,010 (weight average) and intrinsic viscosity of 0.92 dL/g were achieved. These high molecular weight polymers were reached by using pure isolated mixed anhydrides of diacids and acetic acid, under optimized reaction conditions (temperature of 180°C for 90 min under vacuum of 10-4 mm Hg). Polymers of higher molecular weights were synthesized in shorter times by using heterogenic coordination catalysts: cadmium acetate, ZnEt2-H2O (1:1), barium oxide, calcium oxide, and calcium carbonate. By using these catalysts molecular weights of up to 245,000 were reached in 30 min of reaction. Films made of high molecular weight bis(p-carboxyphenoxy)propane–sebacic acid copolymers showed tensile strengths of 40–160 kg/cm2; the strength increased as a function of the bis(p-carboxyphenoxy)propane content and molecular weight.  相似文献   

4.
Three series of terephthalate polyesters (copolyesters and terpolyesters) containing 70, 80, and 90 mol % of ethylene glycol respectively, 1,4‐cyclohexanedimethanol (CHDM) and isosorbide in varying ratios, were synthesized by melt polycondensation. It was found that only ~75 mol % of the feeding isosorbide was incorporated in the resulting polyesters and that their content in diethylene glycol oscillated between 2 and 4 mol %. The polyesters had weight‐average molecular weights in the 25,000–33,000 g mol?1 range and polydispersities between 2 and 2.5. The combined 1H and 13C NMR analysis revealed that the microstructure of all these polyesters was at random. They showed good thermal stability with decomposition temperatures above 400 °C. Their glass‐transition temperatures were observed to increase with the content in cyclic diols, this effect being more pronounced when isosorbide was the replacing comonomer. Only the series containing 90 mol % of ethylene terephthalate units was able to crystallize upon cooling from the melt. Compared isothermal crystallizations revealed that isosorbide was more effective than CHDM in repressing the crystallizability of PET. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The flow behavior and the effect of the spinning conditions on the fiber properties and structure of poly(ethylene terephthalate) modified with 60 mol% p-hydroxybenzoic acid (PET/60PHB) were investigated. PET and its copolyesters with 28 and 80 mol% PHB were used as control samples. The melt of PET/60PHB at temperatures above 265°C exhibited extremely low viscosity and low flow activation energy. High birefringence, indicating the presence of a mesophase, was observed between 265 and 300°C on a hot-stage polarizing light microscope. The maximum tensile strength and initial modulus, 438 MPa and 37 GPa, respectively, were obtained at 275°C for a 0.69 IV polymer. The fiber strength and modulus were significantly lowered when extrusion was conducted at temperatures below 265°C. The fiber properties could also be improved when a high extrusion rate and/or a high draw down ratio was used. Scanning electron microscopy revealed that the fibers spun at temperatures above 265°C had a well-developed, highly oriented fibrillar structure. The fibers spun at lower temperatures, however, were poorly oriented and nonfibrillar in character. The high orientation and superior mechanical performance achieved at high temperatures were attributed to the presence of the nematic mesophase in the polymer melt.  相似文献   

6.
Copolyesters containing naphthalene structure were synthesized from bis(hydroxyethyl)naphthalate (BHEN) or bis(hydroxybutyl)naphthalate (BHBN) and various aralkyloxy diols. The starting bis[4-(2-hydroxyethoxy)aryl] compounds were derived from a nucleophilic substitution of various bisphenols with ethylene carbonate in the presence of KI. Copolyesters having intrinsic viscosities of 0.45–0.60 dL/g were obtained by the melt polycondensation in the presence of metallic catalysts. The effect of reaction temperature and time on the formation of copolyesters were investigated to obtain an optimum condition for copolyesters manufacturing. Most copolyesters have better solubilities than polyethylene naphthalate (PEN) or polybutylene naphthalate (PBN) in aprotic solvents, such as N-methyl-2-pyrrolidone or m-cresol. The thermal properties of the copolyesters were investigated by the differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures (Tg) of copolyesters result from BHEN were in the range of 90–141°C, and 10% weight loss in nitrogen were all above 460°C. Another series of copolyesters result from BHBN have Tg in the range of 75–135°C, and 10% weight loss in nitrogen of over 420°C. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Random poly(hexamethylene terephthalate‐co‐galactarate)s and poly(dodecamethylene terephthalate‐co‐galactarate)s copolyesters covering the whole range of compositions were obtained with weight‐average molecular weights of ~30,000–50,000 g mol?1 by melt polycondensation. They were thermally stable above 300 °C, and displayed Tg in the +20 to ?20 °C range with values steadily decreasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 50 and 150 °C and those made from dodecanediol were able to crystallize from the melt at a crystallization rate depending on composition. Copolyesters containing up to 50% of galactaric units retained the crystal structure of their respective polyterephthalate homopolyesters, whereas they adopted the structure of the respective polygalactarates when the content in Galx units reached 70%. Stress‐strain essays revealed decay in the mechanical parameters as the aromatic units were replaced by Galx. Incubation in aqueous buffer revealed that hydrolysis of the polyesters were largely enhanced by copolymerization and evidenced the capacity of the Galx unit for making aromatic polyesters susceptible to biodegradation. A detailed NMR analysis complemented by SEM observations indicated that hydrolysis took place by preferred splitting of galactarate ester bonds with releasing of alkanediol and Galx‐diacid. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A series of poly(butylene terephthalate) copolyesters containing 5‐tert‐butyl isophthalate units up to 50 mol %, as well as the homopolyester entirely made of these units, were prepared by polycondensation from a melt. The microstructure of the copolymers was determined by NMR to be random for the whole range of compositions. The effect exerted by the 5‐tert‐butyl isophthalate units on thermal, tensile, and gas transport properties was evaluated. Both the melting temperature (Tm) and crystallinity were found to decrease steadily with copolymerization, whereas the glass‐transition temperature (Tg) increased and the polyesters became more brittle. Permeability and solubility slightly increased with the content in substituted isophthalic units, whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5‐tert‐butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters, suggesting that a different structure in the solid state is likely adopted in this case. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 92–100, 2005  相似文献   

9.
Cyclic oligomer fractions of ethylene terephthalate c(ET)n and 1,4‐cyclohexylenedimethylene terephthalate c(CT)n were obtained by cyclodepolymerization of their respective polyesters, the former containing around 80 mol % of trimer and the latter with around 70 mol % of trimer to pentamer. Mixtures of these fractions at selected compositions were subjected to ring opening copolymerization to give a series of poly(ethylene‐co‐cyclohexylenedimethylene terephthalate) copolyesters with ET/CT comonomer ratios ranging from 90/10 to 10/90. The copolyesters were characterized by GPC and NMR, and their thermal properties were evaluated by DSC and TGA. They had essentially the same composition as the feed from which they were produced and had an average‐weight molecular weights between 30,000 and 40,000 g/mol with polydispersities between 2 and 2.7. The distribution of the monomeric units in these copolyesters was essentially at random although it evolved to be a blocky microstructure as the contents in the two comonomers became more dissimilar. Their thermal behavior was the expected one for these types of copolyesters with crystallinity and heating stability decreasing with the content in CT units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5954–5966, 2009  相似文献   

10.
The crystal-nematic phase transition of a copolyester consisting of 20 mol% poly(ethylene terephthalate) and 80 mol% p-hydroxybenzoic acid (PHB) was characterized by depression of the crystal-nematic transition by the addition of a liquid crystal diluent. This copolyester contains blocks of crystalline PHB. Its transition behavior was compared with thatrandom copolyester with diluent of the same composition. From the extrapolated transition temperature depression data, the heat of transition per mole of p-oxybenzoate was calculated as about 1.3 kcal/mol, with an entropy of about 2 cal/deg mol. This assumes that only the p-oxybenzoate unit crystallized from the nematic state. The validity of the Flory-Huggins model for this transition point depression was confirmed graphically by comparison with two different thermotropic-liquid crystal polyesters. These results may represent the first reported crystal-nematic temperatures and heats generated by the dilution method for liquid crystal copolyesters of this type.  相似文献   

11.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Summary: Liquid‐nitrogen quenching was applied to study the enthalpy effect on the stress‐induced crystallization of microbial polyesters. Crystallization bands of poly(3‐hydroxybutyrate) exhibited the potential to reveal the stress distribution in the melt; while crystallization of poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyhexanoate)] gave shish‐kebab structures. Polarized‐light micrographs confirmed that the enhanced nucleation was attributed to the tensile stress. Furthermore, control of the quenching direction provides a method to direct the lamellar growth.

Polarized‐light micrographs of PHB film crystallized at 90 °C after quenching in liquid nitrogen from the melt. The normal of the bands, namely the lamellar growth direction, runs predominantly parallel to the stress direction.  相似文献   


13.
Network copolyesters were prepared from glycerol (Yg) and sebacic acid (10) with 10–90 mol % of either succinic acid (4), 1,12-dodecanedicarboxylic acid (14), 1,18-octadecanedicarboxylic acid (20), or terephthalic acid (T). Prepolymers prepared by melt-polycondensation were cast from dimethylformamide solution and postpolymerized at 230–250°C for various periods of time to form a network. The resultant films were transparent, flexible, and insoluble in organic solvents. The network copolyesters obtained were characterized by infrared absorption spectra, wide angle X-ray diffraction analysis, density measurement, thermomechanical analysis, differential scanning calorimetry, and tensile test. The enzymatic degradation was estimated by weight loss of the network copolyester films in a buffer solution with Rhizopus delemar lipase at 37°C. The weight loss due to the enzymatic degradation was decreased with increasing comonomer content, and the copolyesters with Yg4, Yg20 and YgT more than 50 mol % were not degraded by lipase enzyme at all. On the contrary, Yg-10/14 films were degraded appreciably over whole range of comonomer composition. With increasing comonomer content, the heat distortion temperature increased gradually, while the tensile strength and Young's modulus were not changed much. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2005–2011, 1999  相似文献   

14.
Copolycondensations of IPA, TPA, BPA, and PHB were studied to investigate how PHB, which can form mesogenic segments, should be incorporated into the amorphous IPA/TPA–BPA polyester to obtain the thermotropic copolyester, unlike other copolymerizations studied so far by randomly introducing nonmesogenic components into the liquid crystalline polyesters. Random and controlled copolycondensations were attempted to regulate the segment length of mesogenic PHB units by stepwise addition of BPA and PHB through the two- and three-stage reactions using TsCl/DMF/Py as a condensing agent. Thermotropic copolyesters with ca. 40 mol % PHB could be obtained by a three-stage reaction, despite that more than 70 mol % PHB is needed to prepare by usual random copolymerization with PHB. The segment length of the PHB unit was indirectly studied from IPA/TPA–BPA oligomer distribution at initial reaction by means of GPC and from the NMR analysis of the resulting copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2371–2377, 1999  相似文献   

15.
A synthetic route to higher molecular weight processable polyesters with bisphenol A terephthalate/isophthalate moieties and lactide moieties which are of potential interest for tissue engineering is described. The combination of aliphatic and aromatic moieties is a promising concept for processable polyesters with potential sites for physiological degradation and improved mechanical properties. The molecular structure of the copolyesters prepared by melt condensation via an acid chloride route and incorporation of the lactide moieties by transesterification of an oligo dl -lactide was confirmed by infrared, 1H and 13C nuclear magnetic resonance spectroscopy as well as gel permeation chromatography. The thermal and mechanical properties of copolyesters with different amounts of lactide moieties are reported and correlated with their composition. The reaction mechanism by transesterification was proved by a model reaction with a physical blend of the components and the hydrolytical behavior of the copolyesters under physiological conditions has been investigated. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
《Liquid crystals》2012,39(12):1780-1789
ABSTRACT

In this study, aromatic–aliphatic thermotropic copolyesters derived from p-hydroxybenzoic acid, p-hydroxycinnamic acid (HCA), terephthalic acid and polyethylene glycol (PEG) with different molecular weight (200, 400, 600) were directly synthesised via Vilsmeier adduct solution polymerisation method. The structure, thermal behaviour, liquid crystal property, hydrophylicity and photoactivity were investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimeter, polarised optical microscopy, water contact angle measurement and ultraviolet (UV) spectrophotometer. The PEG incorporation ratio is 0.540–0.691 related to the HCA units, because of its low reactivity. And, the copolyesters have relatively low melting temperatures (96–107°C) and good hydrophylicity (water contact angle value 61.2–75.3°) as compared with wholly aromatic thermotropic copolyester. All of the copolyesters exhibited nematic liquid crystal behaviour and the stable mesophase temperature range was more than 60°C after being melted. The resulted copolyesters had enough thermal stability for melt processing without any degradation. The UV absorption intensities decreased with increased irradiation time, indicating that photocrosslinking occurred.  相似文献   

17.
Random copolyesters of different compositions were synthesized by melt polycondensation of poly(ethylene terephthalate) and 3-bromo - and 3,5-dibromo-p-hydroxybenzoic acids. The copolymer compositions were determined by proton nuclear magnetic resonance spectroscopy. The thermal behavior of these copolyesters was investigated by differential scanning calorimetry. The glass transition temperature, crystallization temperature, and decomposition temperature were found to increase with increase in the paraoxybenzoate content of the copolyesters. The limiting viscosity number and the weight-average molecular weight were determined.  相似文献   

18.
Abstract

Network copolyesters were made from adipic acid and ethylene glycol with 10–40 mol% trimesic acid (Y). Prepolymers prepared by melt polycondensation were cast from dimethylformamide solution and postpolymerized at 260°C for various times to form a network. The degree of reaction (D R), estimated from the infrared absorbance of hydroxyl and methylene groups, increased with increasing postpolymerization time and leveled out at about 90% after 4–6 hours. Heat distortion temperatures (T h) measured by thermomechanical analysis increased greatly from ?83 to 48°C upon the incorporation of Y. Wide-angle x-ray diffraction patterns showed that the copolymer films are amorphous. Density, tensile strength, and Young's modulus decreased for the copolymers with 10–30 mol% Y, whereas they increased drastically for the copolymer with 40 mol% Y. The enzymatic degradation was estimated by the weight loss of the copolymer films in buffer solutions with a lipase at 37°C. The weight loss decreased remarkably with increasing Y and showed no weight loss for the copolymer with 40 mol% Y. On the other hand, the weight loss by alkali hydrolysis increased for the copolymers with 10 and 20 mol% Y, implying a difference in the degradation mechanism between enzymatic degradation and alkali hydrolysis.  相似文献   

19.
There is a need for high-performance applications for terephthalic acid (TPA) polyesters with high heat resistance, impact toughness, and optical clarity. Bisphenol A (BPA) based polycarbonates and polyarylates have such properties, but BPA is an endocrine disruptor. Therefore, new TPA polyesters that are less hazardous to health and the environment are becoming popular. Tetramethylcyclobutanediol (TMCD) is a difunctional monomer that can be polymerized with TPA and other diols to yield copolyesters with superior properties to conventional TPA polyesters. It has a cyclobutyl ring that makes it more rigid than cyclohexanedimethanol (CHDM) and EG. Thus, TMCD containing TPA copolyesters can have high heat resistance and impact strength. TPA can be made from abundantly available upcycled polyethylene terephthalate (PET). Therefore, this review discusses the synthesis of monomers and copolyesters, the impact of diol composition on material properties, molecular weight, effects of photodegradation, health safety, and substitution of cyclobutane diols for future polyesters.  相似文献   

20.
Polyarylates have previously been synthesized from acetate esters via esterolysis (loss of methyl acetate). This polycondensation can be extended to p‐substituted aromatic monomers for liquid crystal polyesters (LCPs). For AB‐type polymers, methyl p‐acetoxybenzoate and methyl 6‐acetoxynaphthoate were copolymerized to an LCP with reasonable molecular weights. Benzoate esters, methyl 4‐benzoyloxybenzoate (MBB) and methyl 6‐benzoyloxy‐2‐naphthoate (MBN), are also investigated. Several tin and antimony oxide catalysts were effective. The rate of esterolysis polymerization of MBB and MBN is slower than that of the corresponding acidolysis melt polymerization, but fast enough to give relatively high‐molecular‐weight polymers and similar thermal stability as commercial LCP prepared by acidolysis. Using these alternative benzoyloxy groups significantly reduced the color problem, because ketene loss cannot occur. Esterolysis melt polymerizations leading to AB/AABB‐type LCPs were performed using either dimethyl 2,6‐naphthalene dicarboxylate (DMND) or dimethyl terephthalate (DMT) with methyl 4‐acetoxybenzoate and phenylhydroquinone diacetate with tin and antimony catalysts. DMT‐based monomer compositions show much faster polymerization than DMND‐based compositions using antimony oxide catalyst. All these LCPs show a Tg in the 140–170 °C range as a result of the inclusion of the naphthalene and/or phenyl hydroquinone units in the polymer chain. Compositions completely off‐balanced on either side still lead to relatively high‐molecular‐weight copolyesters because either excess monomer can be removed during polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3586–3595, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号