首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The alternating copolymerization of methyl methacrylate with styrene in the presence of stannic chloride at ?50°C in toluene was kinetically investigated both under photoirradiation and with the tri-n-butylboron-benzoyl peroxide initiator. The concentrations of the binary and ternary molecular complexes in the copolymerization solution were estimated by use of the equilibrium constants. The rates are found to be proportional to the 1.5th and 1.0th orders of the concentration of the ternary molecular complex composed of stannic chloride, methyl methacrylate, and styrene, under photoirradiation and with initiator, respectively. The conversion increases proportionally with the polymerization time, while the degree of polymerization is constant irrespective of the time. The rates depend linearly upon the square root of the intensity of the incident light and upon the concentration of tri-n-butylboron, respectively. The alternating copolymerization is confirmed experimentally to precede the homopolymerization of the monomer charged in large excess both under photoirradiation and with initiator. The kinetic results indicate consistently that the alternating copolymerization proceeds through the homopolymerization of the ternary molecular complex in the steady state with a bimolecular termination. Both the conventional radical mechanism and the double complex mechanism are unsuitable for the present alternating copolymerization.  相似文献   

3.
The alternating copolymerization of methyl methacrylate with styrene with the use of stannic chloride was kinetically examined at ?20°C in 1,2-dichloroethane both under photoirradiation and with radical initiator (2:1 tri-n-butylboron-benzoyl peroxide system). At conversions lower than 7%, the conversion increases linearly to the polymerization time, whereas the degree of polymerization is constant irrespective of the polymerization time. The alternating copolymerizations are 1.5 order and the 1.0 order reactions with respect to the ternary molecular complex composed of stannic chloride, methyl methacrylate, and styrene, under photoirradiation and with initiator, respectively. The linear dependences of the rates upon the 0.5 order of the intensity of the incident light and upon the 1.0 order of the concentration of tri-n-butylboron indicate a bimolecular termination. The rate normalized by the 1.5 order of the concentration of the coordinated methyl methacrylate and the rate normalized by the concentration of the coordinated methyl methacrylate are proportional to the 1.5 and 1.0 orders of the charged concentration of styrene, for the copolymerizations under photoirradiation and with initiator, respectively. The kinetic results in the 1,2-dichloroethane solution are quite consistent with those in the toluene solution. The alternating copolymerization mechanism, in which the ternary molecular complex predominantly homopolymerizes as a monomer unit, is confirmed.  相似文献   

4.
By the use of various boron compounds methyl methacrylate and styrene were copolymerized under photoirradiations at ?20°C. The alternately regulating activities of the boron compounds in the copolymerizations were in the following order: boron trichloride > ethylboron dichloride > boron trifluoride > diethylboron chloride ? triethylboron (?0). Boron trichloride and ethylboron dichloride exhibited such high regulating activities that their presence in 1 mol% in the charged methyl methacrylate was sufficient to complete equimolar alternating copolymerization. The alternating copolymerization proceeded in the steady state. The copolymerization rates decreased in the following order: boron trichloride ? ethylboron dichloride > diethylboron chloride ? triethylboron (?0). The cotacticities of methyl methacrylate-centered triads in the resulting copolymers were identical to those prepared with boron trichloride, ethylboron dichloride, and diethylboron chloride. The mechanism of the alternating copolymerization is discussed.  相似文献   

5.
The equilibrium constants for the complex formation between stannic chloride and methyl methacrylate were determined in n-hexane–toluene solution at 0, ?20, and ?30°C by using the absorption band at 350 nm. Continuous variation plots at ?20°C in n-hexane based on the 1H-chemical shifts definitely show a 1:1 interaction between the coordinated methyl methacrylate and styrene or toluene. The magnitudes of the shifts for the four groups of protons in methyl methacrylate are found to be in a specific ratio in common with the 1:2 complex–styrene or -toluene system. The equilibrium constants for the ternary molecular complex formation between the 1:2 complex and styrene or toluene were determined in n-hexane in the temperature range ?50 to +20°C by use of the chemical shifts. The concentrations of the complex species in the alternating copolymerization solutions were estimated by use of the equilibrium constants. There is a linear relationship between the enthalpy and the entropy changes for the ternary molecular complex formation, which is governed by the enthalpy factor. The specificity of the interactions indicates a specific time-averaged orientation of benzene ring to the coordinated methyl methacrylate. The effects of the coordination of methyl methacrylate to stannic chloride were discussed on the basis of results of 13C-NMR spectroscopy.  相似文献   

6.
The alternating copolymerization of styrene and methyl α-chloroacrylate (MCA) with diethylaluminum chloride (Et2AlCl) in benzene at 0°C has been investigated. The copolymer has an equimolar composition irrespective of the feed monomer composition, the copolymer yield and the amount of Et2AlCl used. The copolymerization proceeds first very rapidly and then rather slowly after attaining a certain yield which varies proportionally to the amount of Et2AlCl used. A maximum copolymer yield is observed at about 60% MCA feed composition. The 1H-NMR analyses of dyad, triad, and pentad of the alternating deuterated α-d-St-MCA copolymer indicate that the configuration of this copolymer can be explained by a single parameter, coisotacticity σ(σ = 0.69). A favorable mechanism of the alternating propagation as well as of the stereoregularity control is discussed.  相似文献   

7.
8.
9.
The effect of complex formation on stereoregulation in free-radical polymerization was studied. Complexes of methacrylonitrile with ZnCl2 and SnCl4 were prepared and their properties and structures examined. The complexes were polymerized by initiation of α,α′-azobisisobutyronitrile or by irradiation with γ-rays from a60Co source or ultraviolet rays either in solution or in bulk at various temperatures ranging from ?78 to 100°C. The triad tacticities of the resulting polymethacrylonitrile were determined by converting it to poly(methyl methacrylate) for NMR spectroscopy. The radicals in complexed forms were studied by ESR spectroscopy with the polymerization system in toluene irradiated with ultraviolet rays at ?120°C. The tacticities of the resulting polymers and their dependencies on the polymerization temperature were found to be characteristic of the complex species, i.e., the kind of metal chloride and the stoichiometry, being different from the tacticities and the dependencies, respectively, of the polymer obtained with pure methacrylonitrile. The 2:1 and the 1:1 complexes with SnCl4 were found to give an eleven-line and a nine-line spectrum, respectively. On the basis of the results of both the tacticities and the ESR spectra, it was estimated that the proportion of the intracomplex reaction was 40%, and that the probabilities of isotactic diad addition of intra- and intercomplex reaction were 0.70 and 0.48, respectively.  相似文献   

10.
Stereoregulation in free-radical polymerization was studied for the polymerization of the 2:1 or 1:1 complex of methyl methacrylate with ZnCl2 or SnCl4. The complexes were polymerized with the use of a free-radical initiator or γ-ray irradiation either in the liquid or solid state at various temperatures ranging from ?196 to 110°C, and the tacticities of the resulting polymers were determined by NMR spectroscopy. The polymers had different and characteristic values of tacticities depending upon the complex species, i.e., the kind of metal chloride and the stoichiometry. The tacticities were found to be independent of the polymerization temperature in both the liquid and solid states, in contrast with the fact that tacticities of the polymer from pure monomer changed markedly with the temperature. A temperature dependence appeared in the polymerization system, which contained more monomer than that corresponding to the 2:1 complex. The effect of the viscosity or the solid phase on the stereoregulation was examined in comparison with the polymerization of a mixture of methyl methacrylate and liquid paraffin. Two possible explanations regarding the stereoregulation mechanism are offered in relation to the structures of the complexes.  相似文献   

11.
Alternating copolymerization of butadiene with several α-olefins and of isoprene with propylene were investigated by using a mixture of VO(Acac)2, Et3Al, and Et2AlCl as catalyst. The alternating copolymerization ability of the olefins decreases in the order, propylene > 1-butene > 4-methyl-1-pentene > 3-methyl-1-butene. The study on the sequence of the copolymer of isoprene with propylene by ozonolysis reveals that the polymer chain is reasonably expressed by the sequence \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_{\rm 2} \hbox{--} {\rm CH} \hbox{=\hskip-1pt=} {\rm C(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \hbox{--} {\rm CH(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \rlap{--}]_n $\end{document}. NMR and infrared spectra indicate that the chain is terminated with propylene unit, forming a structure of ?C(CH3)? CH2? C(CH3)?CH2 involving a vinylene group.  相似文献   

12.
Alternating copolymerizations of methyl methacrylate with styrene in the presence of boron trichloride at 0°C in 1,2-dichloroethane were carried out by using benzoyl peroxide as an initiator. Conversion increased proportionally with polymerization time, whereas the degree of polymerization was constant irrespective of time. The rate depended linearly on the square root of the concentration of benzoyl peroxide. The equilibrium constants for the formation of the ternary molecular complex composed of methyl methacrylate, styrene, and boron trichloride in 1,2-dichloroethane at ?20, ?10, and +4°C were determined by 1H-NMR spectroscopy. The concentrations of the ternary molecular complex in the polymerization mixtures were evaluated from the equilibrium constant of the formation. The rate of the alternating copolymerization was proportional to the first order of the concentration of the ternary molecular complex. The distribution of methyl methacrylate-centered triads in the alternating copolymer was different from that of styrene-centered triads. These results can be explained by a mechanism involving the homopolymerization of a ternary molecular complex.  相似文献   

13.
The properties of the acrylonitrile–styrene copolymer prepared in the presence of zinc chloride were investigated in comparison with those of a copolymer having the same overall composition and prepared by the ordinary radical procedure. The characteristics of the polymer prepared with ZnCl2 were as follows: (1) less coloration by alkali treatment, (2) less coloration by thermal treatment and (3) higher glass transition temperature. These features may be attributed principally to the structure of the copolymer, which has more unlike bonds and less long sequences as described in the first article of this series. The effects of residual salt in the copolymer on the properties were also investigated.  相似文献   

14.
Copolymerization of acrylonitrile with styrene spontaneously occurred on addition of zinc chloride without addition of any other radical initiator. The composition of the copolymer approached that of strictly alternating copolymer as zinc chloride added to the copolymerization system increased. The significance of the apparent monomer reactivity ratios of this copolymerization system was studied from a kinetic point of view, and it was shown that the monomer sequence distribution is indicated by the apparent monomer reactivity ratios. Further, equations which represent the relation between the apparent monomer reactivity ratios and Q,e values at a given salt concentration were derived. These equations reasonably accounted for the decrease of the apparent monomer reactivity ratios of the copolymerization of acrylonitrile with styrene in the presence of zinc chloride and the behavior of the other acrylonitrile copolymerization systems in the presence of zinc chloride. The initiation step of the spontaneous radical copolymerization of acrylonitrile with styrene in the presence of zinc chloride was explained by a cross-initiation mechanism.  相似文献   

15.
Triad cotacticities of alternating copolymers of methyl methacrylate with styrene prepared in the presence of zinc chloride, ethylaluminium sesquichloride, and ethylboron dichloride are investigated from the mechanistic point of view by means of 1H- and 13C-NMR. The cotacticities from 1H-NMR spectra are obtained accurately by using α-d-styrene in the place of styrene and by measuring the spectra on the copolymer in o-dichlorobenzene at 170°C. The relative intensities of three peaks of the splitting signal for the methoxy protons in the nonalternating copolymers obtained by the use of benzoyl peroxide in the absence of metal halides agree well with the cotacticity distribution calculated theoretically by the Lewis-Mayo mechanism with the stereoregulation following Bernoullian statistics. The splitting signals in the 1H- and 13C-NMR spectra of the alternating copolymers prepared in the presence of metal halides cannot be explained by the same mechanism. The relative intensities of three peaks of the splitting signals for the methoxy protons and for the carbonyl carbon in the methyl methacrylate unit (the contents of cotactic triads centered by the methyl methacrylate unit) are not equal to those for the aromatic C1 carbon in the styrene unit (the contents of cotactic triads centered by styrene unit). The value of f2Y - 4fxfz is not equal to zero, where fx, fy, and fz are the cosyndiotactic, coheterotactic, and coisotactic triad contents, respectively, in the alternating copolymer. Copolymers obtained in the presence of zinc chloride are not exactly equimolar alternating but always contain a methyl methacrylate unit in excess, and the relative intensities of the three peaks for the aromatic C1 carbon change with the copolymer composition. These results are explained by a proposed mechanism: the alternating copolymerization proceeds through the homopolymerization of a ternary molecular complex composed of a metal halide, methyl methacrylate, and styrene, accompanied with the stereoregulation following first-order Markovian statistics; the increase of methyl methacrylate content in the copolymer prepared in the presence of zinc chloride is caused by the participation of the binary molecular complex composed of a metal halide and methyl methacrylate in addition to the ternary molecular complex.  相似文献   

16.
The 1:1 or 2:1 complex of acrylonitrile, methacrylonitrile, or methyl methacrylate with ZnCl2 was copolymerized with styrene at the temperature of 0–30°C without any initiator. The structure of the copolymer from methyl methacrylate complex and styrene was examined by NMR spectroscopy. The complexes of acrylonitrile or methacrylonitrile with ZnCl2 gave a copolymer containing about 50 mole-% styrene units. The complexes of methyl methacrylate yielded an alternating copolymer when the feed molar ratio of methyl methacrylate to styrene was small, but with increasing feed molar ratio the resulting copolymer consisted of about 2 moles of methyl methacrylate per mole of styrene. The formation of a charge-transfer complex of styrene with a monomer coordinated to zinc atom was inferred from the ultraviolet spectra. The regulation of the copolymerization was considered to be effected by the charge-transfer complex. The copolymer resulting from the 2:1 methyl methacrylate–zinc chloride complex had no specific tacticity, whereas the copolymer from the 1:1 complex was richer in coisotacticity than in cosyndiotacticity. The change of the composition of the copolymer and its specific tacticity in the polymerization of the methyl methacrylate complex is related to the structure of the complex.  相似文献   

17.
18.
Under a variety of conditions it has not been possible to induce the free-radical-initiated homopolymerization of α-methacrylophenone (α-MAP). The only product isolated from such efforts was the Diels-Alder dimer of the monomer. A Mayo-Lewis plot of the free-radical copolymerization of α-MAP and styrene shows considerable scatter but the copolymer composition indicates that an α-MAP unit can add to itself. These results have been ascribed to a penultimate effect. α-MAP is homopolymerized by dimsylsodium or n-butyllithium. Attempted copolymerization of α-map and styrene with n-butyllithium produces >95% α-MAP. Unexpectedly, α-MAP does not homopolymerize with lithium dispersion, but does react in the presence of styrene to give product containing a relatively small amount of α-MAP.  相似文献   

19.
The copolymerizations of benzofuran with α,α- or α,β-disubstituted acrylic monomers were studied. The alternating copolymer of benzofuran and crotononitrile was prepared in the presence of an excess amount of crotononitrile with respect to benzofuran, ethylaluminum dichloride, and azobisisobutyronitrile. The intrinsic viscosity of copolymers was 0.1–0.2 dl/g. Crotononitrile is known to possess a polar carbon–carbon double bond from 13C-NMR spectroscopy but the alternating copolymerizability with benzofuran is low. It was found that the order of alternating copolymerizability of acrylic monomers is as follows: This fact may be attributed to the steric hindrance of the β-methyl of crotononitrile. The induced shifts by complexation with ethylaluminum dichloride on 13C-NMR spectra of the two isomers of crotononitrile are almost same but the copolymerizability of cis isomer is higher than that of trans isomer. α-Chloroacrylonitrile shows the highest alternating copolymerizability with benzofuran in the presence of weak Lewis acid such as ethoxyaluminum chloride. Alternating copolymerizability of acrylic monomers seems to be in proportion to their e value. The reactivity of cis- and trans-crotononitrile may depend on the nature of a ternary complex composed of aluminum compound, crotononitrile, and benzofuran.  相似文献   

20.
The copolymer composition curve of the methyl methacrylate–styrene copolymer obtained by the copolymerization in the presence of ZnCl2 has more alternating tendency than that of ordinary methyl methacrylate–styrene copolymer obtained by radical copolymerization. The fine structure of the copolymer was examined by NMR, and the mechanism of the propagation step of the copolymerization in the presence of ZnCl2, which was proposed in the first report of this series, was verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号