首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the reaction of FSO2N?PCl3 with perfluorpropionic acid FSO2NHC(O)C2F5 is formed, which yields FSO2N?C(Cl)? C2F5 (I) with PCl5. The chlorine atom in (I) could be replaced by the substituents NH2 (II) and N(C2H5)2 (III). FSO2N?C(Cl)? CF3 reacts with AgOCN, AgSCN, unhydrous HF and 2,3-dimethylbutadiene. FSO2N(CH3)? C(O)F reacts with elemental fluorine under exchange of a proton against a fluorine atom to give FSO2N(CH2F)? C(O)F, which liberates at room temperature COF2 and trimerises to form 1,3,5-Tris-fluorosulfonyl-s-triazine (VIII). The amides FSO2N?C(CH3)NH2 and FSO2N?C(CF3)NH2 react with SF4 in the presence of NaF to yield the iminosulfur difluorides FSO2N?C(CH3)? NSF2 (IX) and FSO2N?C(CF3)? NSF2 (X)  相似文献   

2.
Bis(trimethylsilyl)hypophosphite und Alkoxycarbonylphosphonous Acid Bis(trimethylsilyl) esters as Building Blocks in Organophosphorus Chemistry The oxidation of pure bis(trimethylsilyl)hypophosphite ( BTH ) with chalcogenides forming (Me3SiO)2P(X)H (X = O, S, Se, Te) is described as well as its reactions with alkylhalides RX (X = Cl, Br, I) and Cl? C(O)OR (R = Me, Et, Bzl). By reaction with oxygen, sulfur, and selenium the alkoxycarbonylphosphonous acid bis(trimethylsilyl)esters form RO? C(O)? P(X)(OSiMe3)2 (X = O, S, Se) whereas with Cl? C(O)OR the bis(alkoxycarbonyl)-phosphinic acid trimethylsilylesters are obtained. After partial hydrolysis the resulting instable RO? C(O)? P(O)H(OSiMe3) gives RO? C(O)? P(O)(OSiMe3)? CH2? NH? A? COOR′ (A = CH2, CH2CH2, CHCH3, CH2CH2SH, CHCH(CH3)2,…) when allowed to react with hexahydro-s-triazines of the aminoacid esters. Reactions of the alkoxycarbonyl-P-silylesters with NaOR or NaOH result in the corresponding mono-, di-, or trisodium salts. With mineral acids decarboxylation occurs, but H? P(O)(OH)? CH2? NH? A? COOH can be obtained, too. The structure of the compounds described are discussed by their n.m.r. data.  相似文献   

3.
Dimethyl-diphenyl and dimethyl-dibenzyl-silane react in liqu. NH3 in the presence of KKH2 giving rise to the formation of H2N? Si(Me2)? NH? Si(Me3)? NHK (III); exclusively C6H5 and C6H5CH2 are split off and substituted by NH2. Reaction of the potassium compound III with the equivalent amount of NH4Cl brings about a mixture of octamethylcyclotetrasilazane and hexamethylcyclotrisilazane.  相似文献   

4.
Reaction Products of Chloromethoxiphosphines and Antimony (V) Chloride. Vibrational Spectra of the 1:1-adducts of Methoxiphosphoryl Compounds and Antimony (V) Chloride Chloromethoxiphosphines react with antimony(V) chloride in a redox process to yield the chloromethoxiphospllonium hexachloroantimonates(V) (CH3O)3PCl2+SbCl6? (II) and CH3OPCl3+SbCl6? (III). II, III, (CH3O)3PCl+SbCl6?(1) and (CH3O)4P+SbCl6? eliminate easily methyl chloride and give the addition compounds OP(OCH3)3·SbCl5(IV), OPCl(OCH3)2 · SbCl5 (V), OPCl2(OCH3)·SbCl5 (VI) and OPCl3·SbCl5 (VII). The vibrational spectra of IV, V nnd VI are discussed.  相似文献   

5.
On reacting of oxamide with PCl5 the syntheses of the new N-, C- and pentavalent phosphorus containing heterocycles I and II (see “Inhaltsübersicht”), built up from interconnected four- and fivemembered ring systems, have been achieved. Reaction of N, N′- dimethyloxamide with PCl3 yields the compound III which may be chlorinated to IV. An intermolecular reaction between the PCl3- and carbonyl groups of IV gives V. The fivemembered ring systems III and V may each be linked together via N? CH3 bridges, i. e. via P? N(CH3)? P and P(O)? N(CH3)? P(O) units, respectively. N, N′- dimethyloxamide reacts with PCl5 to form a mixture of fivemembered heterocycles containing trivalent phosphorus (as a PCl group) and chlorinated carbon.  相似文献   

6.
Adducts of Phosphoryl Compounds and SbCl5 Preparation and IR Spectra of 1:1 Addition Compounds from Chlorodimethylamino- resp. Chlorodimethylaminomethoxiphosphoryl Compounds and Antimony(V) Chloride The addition compounds (CH3O)2[(CH3)2N]PO · SbCl5 ( II ), (CH3O)[(CH3)2N]2PO · SbCl5 ( III ), [(CH3)2N]3PO · SbCl5 ( IV ), Cl2[(CH3)2N]PO · SbCl5 ( VI ), Cl[(CH3)2N]2PO · SbCl5 ( VII ), and Cl(CH3O)[(CH3)2N]PO · SbCl5 ( VIII ) are prepared by reaction of the phosphoryl compounds with antimony(V) chloride. The influence of the Lewis acid to the bonds of the phosphoryl compounds is discussed. The 31P-n.m.r. data of the adducts are communicated and compared with those of the free phosphoryl compounds.  相似文献   

7.
On Chalcogenolates. 113. Reactions of Chloramine with Carbon Disulfide and with Methylesters of Dithiocarbamic Acids The reactions of chloramine with CS2 and with H2N? CS? SCH3, CH3? NH? CS? SCH3, and (CH3)2N? CS? SCH3 have been studied. The reaction with the methylester of dithiocarbamic acid gives the known dimethyl perthiocyanate and the reaction with the methylester of N-methyldithiocarbamic acid leads to CH3S? CS? N(CH3)? C(?NCH3)? SCH3. The latter compound has been characterized by means of electron absorption spectra, infrared spectra, nuclear magnetic resonance spectra (1H and 13C), and mass spectra.  相似文献   

8.
Inhaltsübersicht. Trimethylamin und Antimon(V)-chlorid bilden keinen Dornor-Acceptor Komplex. In Abhängigkeit vom Molverhältnis reagieren die Komponenten zu (CH3)3NCl+SbCl6 (I) bzw. zu (CH3)3NH+X und (CH3)2N=CH3+X (X = SbCl6, SbCI4, Sb3CI143– und CI). I kann in (CH3)3NH+SbCl6 und (CH3)2N=CH2+SbCl6 zerfallen. The Reaction of Trimethylamine with Antimony (V) Chloride Abstract. Trimethylamine and antimony(V) chloride forms no donor-acceptor-complex. In dependence of the molar ratio the compounds reacts to (CH3)3NCl+SbCl6 (I) resp. to (CH3)3NH+X and (CH3)2N=CH3+X (X = SbCl6, SbCI4, Sb3CI143– and CI). I can decompose into (CH3)3NH+SbCl6 and (CH3)2N=CH2+SbCl6.  相似文献   

9.
On Trichlorophosphazo Compounds from Nitriles. III. The Reaction between Acrylonitrile and PCl3. The reaction of PCl3 with acrylonitrile at higher temperatures gives CH2Cl? CCl2? CCl2? N? PCl3 ( II ). On pyrolysis of (II), CH2Cl? CCl2? CN (IV) is form- ed. Treatment of (II) with SO, results in CHzCL? CCl2? CCl?N-P(0)Cl2 ( III ). At lower temperatures and/or in the presence of PCl3, acrylonitrile reacts with PCl3 to give the cis/ trans isomers VIa and VIb .  相似文献   

10.
Vibrational Spectra of Dichlorophosphorylmethylamine CH3? NH? P(?O)Cl2 and its Adducts with SbCl5 and SnCl4 The vibrational spectra of liquid samples and solutions, as well as cryoscopic molecular weight determinations show that CH3? NH? P(?O)Cl2 exists largely in the dimeric form. The association occurs through hydrogen bridges. The adducts SbCl5 · CH3? NH? P(?O)Cl2 and SnCl4 · 2 CH3? NH? P(?O)Cl2 are formed through addition via an oxygen atom. The ligands have cis-configuration in the tin compound.  相似文献   

11.
Synthesis and Properties of the 1,3-Benzazaphospholes 1H-1,3-Benzazaphospholes (R = H, CH3, C6H5, N(CH3)2) are synthesized not only rom o-aminophenylphosphines and different cyclisation compounds such as R? C(OR)?NH · HCl, R? C(O)Cl, R? COOR′, R? C(OCH3)2NR′2, or Cl2C?N(CH3)2Cl but also from secondary o-aminophenylphosphines PRH? C6H4? NH2 (R = C6H5, C2H5) and CH3? C(OR)?NH · HCl under elimination of ether or from 1,3-benzazaphospholines after oxidation or thermal treatment. Whereas the 1,3-benzazaphospholes don't react with acetyl chloride or methyl iodide the N-acetyl- and P-methyl-1,3-benzazaphospholes are formed starting with the ambident anion. Further reactions of the 1,3-benzazaphospholes and the nmr data of the compounds prepared are discussed.   相似文献   

12.
Preparation and Catalytic Properties of Rhodium(I) Complex Salts of the Type [Rh(COD)(o-Py(CH2)2 P(Ph)(CH2)3ZR)]PF6 (Z = O, NH) . In dichloromethane solutions were reacted [Rh(COD)Cl]2 (COD = cis,cis-1.5-cyclooctadiene) with each of the four new ligands of the type o-Py(CH2)2P(Ph)(CH2)3ZR in the presence of the halogen scavenger TIPF6 at 0°C to complex salts [Rh(COD) (o-Py(CH2)2P(Ph)(CH2)3ZR]PF6 (ZR = OC2H5, I ; OPh, II ; NHPh, III ; NHcyclo? C6H11, IV ). The Rh1 complex cation in the obtained compounds I – IV coordinates besides the bedentate COD group the ligand donor atoms P und pyridinic N and the remaining donor atom Z is uncoodinated in an assumed square planar ligand geometry at the Rh central atom. In 1.4 dioxane solutions the complex catalysts I – IV polymerize at 25°C the substrate phenylacetylene (PA) to polyphenylacetylene (PPA): values of TON [h?1] between 352 ( I ) and 876 ( IV ), and average molecular weights Mw (GPC measurements) between 238 000 ( I ) and 199 900 ( IV ). These given values exhibit a dependency on the ZR group in complexes I – IV . The microstructure of isolated PPA is cis-transoidal. It is formed stereospezific and, based on MNDO calculations, is thermodynamically favoured. For the purpose of comparison, from both the newly synthesized compounds of the type [Rh(COD)DBN- (or DBU)Cl] (DBN = 1.5-Diazabi-cyclo[4.3.0.]non-5-en, DBU = 1.8-Diazabicycl0[5.4.0]- undec-7-en) was obtained a larger value of TON with 1292 (or 1327) [h?], but a lower value of M, with 166200 (or 131200). These catalysts including I –IV polymerize PA to PPA at a lower reaction temperature with improved selectivity and larger values of Mw as hitherto known catalyst systems.  相似文献   

13.
Polysulfonyl Amines. XLVI. Molecular Adducts of Di(organosulfonyl)amines with Dimethyl Sulfoxide and Triphenylphosphine Oxide. X-Ray Structure Determination of Di(4-fluorobenzenesulfonyl)amine-Dimethyl Sulfoxide(2/1) From equimolar solutions of the respective components in CH2Cl2/petroleum ether, the following crystalline addition compounds were obtained: (X? C6H4SO2)2NH …? OS(CH3)2, where X = H, 4? CH3, 4? Cl, 4? Br, 4? I, 4? NO2 or 3? NO2; [(4? F? C6H4SO2)2NH]2 · (OS(CH)3)2 ( 8 ); (4? I? C6H4SO2)2NH · OP(C6H5)3. A (2/1) complex of (4? F? C6H4SO2)2NH with OP(C6H5)3 could not be isolated. The solid-state structure of the (2/1) compound 8 is compared with the known structure of the (1/1) complex (CH3SO2)2NH · OS(CH3)2. The crystallographic data for 8 at ?95°C are: monoclinic, space group C2/c, a = 2 369.9(13), b = 1 006.8(4), c = 2 772.6(13) pm, β = 110.71(4)°, U = 6.187 nm3, Z = 8. Two N? H …? O hydrogen bonds with N …? O 275 and 280 pm connect the disulfonylamine molecules with the dimethyl sulfoxide molecule. The O atom of the latter has a trigonal-planar environment consisting of the S atom and the two hydrogen bond H atoms.  相似文献   

14.
Analysis of ESR spectra of mechanoradicals from poly(methyl methacrylate) reveals that after mechanical degradation in vacuo at 77°K, the sample contains two types of primary radicals? CH2? C(CH3)(COOCH3) (I) and CH2? C(CH3)(COOCH3)? CH2 (II) produced by the breaking of the polymer chain, and secondary radicals ? CH2? C(CH3)(COOCH3)? CH? C(CH3)? (COOCH3)? CH2? (III). With increasing temperature, radical I remains stable while II reacts with methylene hydrogen of the polymer chain giving rise to the secondary radical III, which decays and finally disappears as the temperature rises. After admission of oxygen at 113°K, the polymer radicals react with oxygen with formation of polymer peroxy radicals ROO. and diamagnetic dimers. With increasing temperature the latter dissociate again to the original polymer peroxy radicals which gradually decay, if the temperature is increased further. The present results are compared with earlier ones obtained on poly(ethylene glycol methacrylate) (PGMA).  相似文献   

15.
Reactions of Tetrakis[bis(trimethylsilyl)methyl]dialane(4) with Methylisothiocyanate and Phenylisocyanate – Insertion into the Al? Al Bond and Fragmentation Tetrakis[bis(trimethylsilyl)methyl]dialane(4) 1 reacts with methyl isothiocyanate under cleavage of the C?S double bond and insertion of the remaining isonitrile fragment into the Al? Al bond. As shown by crystal structure determination a three-membered AlCN heterocycle ( 4 ) is formed by the interaction of the nitrogen lone pair with one unsaturated Al atom leading to an acute angle at the aluminium center N? Al? C of 36.6°. In contrast the reaction with the hard base phenyl isocyanate yields a mixture of many unknown compounds, from which only one ( 5 ) could be isolated in a very poor yield. The crystal structure of 5 reveals only one dialkyl aluminium fragment and a chelating ligand formed by the trimerization of the isocyanate under loss of one CO group and addition of a hydrogen atom. 5 was also synthesized by the specific reaction of the chloro dialkyl aluminium compound (R = CH(SiMe3)2) with Li[H5C6? N?C(O)? N(C6H5)? C(O)? N(H)? C6H5].  相似文献   

16.
Upon reaction with NaBH4 the carbene chelates [C5H5(CO)xMC(C6H5N(CH3)C(C6H5)N(CH3)]PF6 (I,M = Mo, x = 2; II,M = Fe, x = 1) are reduced at the carbene carbon with formation of the neutral compounds C5H5(CO)xMC(H)(C6H5)N(CH3)C(C6H5)N(CH3) (III and IV). Depending on the orientation of the incoming H substituent with respect to the C5H5 ligand two different isomers A and B are obtained which can be separated by column chromatography. Whereas the H? addition to the Fe compound II is almost stereospecific (formation of 95% IVB), the stereoselectivity of the H? addition to the Mo compound I is influenced by a competitive metal centered rearrangement of III in opposite direction. The approach to the equilibrium IIIA/IIIB 85/15 can be measured by 1H NMR spectroscopy (ΔG3328 26.6 kcal/mol).  相似文献   

17.
Hydrazinium monochloride disproportionates on interaction with diphenyl-trichlorophosphorane, giving N2 and [(C6H5)2P(Cl)? N? PCl(C6H5)2]Cl. The phosphinazine dihydrochloride [(C6H5)2PCl? NH? NH? PCl(C6H5)2]Cl2 is obtained according to equation (4). The preparation of the P? N five-ring compound X, formulated in ?Inhaltsübersicht”?, is described.  相似文献   

18.
On Chalcogenolates. 81. Studies on N-Hydroxy Dithiocarbamic Acid. 3- Esters of N-Hydroxy Dithiocarbimic Acid and Dithiocarbamic Acid The reaction between hydroxylamine, carbon disulfide, and alkyl halide leads to the corresponding ester of N-hydroxy dithiocarbimic acid HO? N?C(SR)2 with R = CH3, C2H5; R2 = ? CH2? CH2? . The phenyl ester of N-hydroxy dithiocarbamic acid HO? NH? CS(SC6H5) has been prepared by reaction of hydroxylammonium chloride with the phenyl ester of chlorodithioformic acid. N-Methyl hydroxylammonium chloride reacts with carbon disulfide and alkyl iodide to form the corresponding ester of the dithiocarbamic acid HO? N(CH3)? CS(SR) with R = CH3, C2H5. The unstable compounds have been characterized by different methods.  相似文献   

19.
The following p-substituted N,N-bis-trimethlsilyl anilines p-X? C6H4? N[Si(CH3)3]2 are prepared by silylation of free amines: X = H, CH3, C2H5, CH3O, CH3CO, F, Cl, Br, J, CN, C6HS, (CH3)3SiO, and [(CH3)3Si]2N, and the isotopic derivatives C6H5? 15N[Si(CH3)3]2 and C6D5N[Si(CH3)3]2. The vibrational spectra are reported and assigned. The molecular symmetry of p-[(CH3)3Si]2N? C6H4? N[Si(CH3)3]2 is determined. The influence of the mass of the substituents X on the positions of the νsSiNSi vibrational frequencies is discussed.  相似文献   

20.
Reaction of Diphenoxyphosphorylchloride with N,N-disubstituted Ureas – Formation of Phosphorylated Biuret Compounds N′,N′-disubstituted N-diphenoxyphosphorylureas, (PhO)2P(O)? NH? CO? NR1R2 (R1 = R2 = Et, 1 ; n-Pr, 2 ; n-Bu, 3 ; i-Bu, 4 ; R1 = Me and R2 = Ph, 5 ) as well as phosphorylated biuret compounds, (PhO)2P(O)? NH? CO? NH? CO? NR1R2 are obtained in the reaction of diphenoxyphosphorylchloride with N,N-disubstituted ureas and triethylamine. The biuret derivatives are formed via (PhO)2P(O)NCO. Their yield rises if the reaction is carried out without amine. The X-ray crystal structure analysis of (PhO)2P(O)? NH? CO? NH? CO? NPr2, 8 , shows that dimers exist in the crystal with intermolecular as well as intramolecular hydrogen bonds. The framework formed by atoms P? N1? C1(O4)? N2? C2(O5)? N3(C3)C6 is planar. The existence of a rotation barrier along the bond C2–N3 was detected by NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号