首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We present herein a mechanistic investigation by nanoelectrospray ionization mass spectrometry of copper‐catalyzed aerobic oxidative processes involved in the N‐nitrosocarbonyl aldol reaction of N‐hydroxycarbamates. Protonated amine and copper as charge‐tags aided the detection of reaction intermediates, which verified the enamine mechanism together with a competing enol process. Our experimental results reveal that the copper‐catalyzed aerobic oxidation of N‐hydroxycarbamates may proceed through an autoxidation catalytic mechanism in which a CbzNHO. radical abstracts a hydrogen from the bound N‐hydroxycarbamate to release the nitroso intermediate through a bimolecular hydrogen‐atom transfer. In this process, the chiral diamine also works as a ligand for copper to facilitate the aerobic oxidative step. The dual role of the chiral vicinal diamine as both an aminocatalyst and a bidentate ligand was finally uncovered.  相似文献   

2.
ESR and optical absorption studies have been carried out on bis[N-(2-hydroxyethyl)ethylenediamine] copper II-chloride, -bromide, -nitrate, -sulphate, bis(N-methylethylenediamine) copper II thiocyanate and bis(N,N′-dimethylethylenediamine) copper II thiocyanate, in non-interacting solvents at room and liquid nitrogen temperatures. The molecular orbital coefficients are estimated assuming axial symmetry and indicate that the in-plane π bond is as strong as the σ bond. The consistency in the value of the χ parameter, which is proportional to the hyperfine constants, indicates that it is quite independent of the ligand substitution and depends upon the immediate environment of the copper II ion.  相似文献   

3.
A variety of chiral N,N‐bidentate and N,N,N‐tridentate ligands based on the pyridine framework, namely C2‐symmetric dipyridylmethane and terpyridine, N‐(p‐toluensulfinyl)iminopyridines and two kinds of iminopyridines, has been assessed in the asymmetric copper(I)‐catalysed allylic oxidation of cyclic olefins. Catalytic activity and enantioselectivity were found to be highly dependent upon the framework of the ligands, which afforded cycloalkenyl benzoates in low to moderate yields and enantioselectivities. The best yields (up to 70%) and enantioselectivities (up to 53% enantiomeric excess) were obtained with an iminopyridine based on camphane and quinoline skeletons. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
An unprecedented copper‐catalyzed acylnitroso dearomatization reaction, which expands the traditional acylnitroso ene reaction and acylnitroso Diels–Alder reaction to a new type of transformation, has been developed under aerobic oxidation. Intermolecular and intra‐/intermolecular reaction modes demonstrate an entirely different N‐ or O‐acylnitroso selectivity. Hence, we can utilize this reaction as a highly diastereoselective access to a series of new pyrroloindoline derivatives, which are important structural motifs for natural‐product synthesis.  相似文献   

5.
ESR and optical absorption studies are described for a number of copper(II) chelates with aliphatic polyamines, exhibiting both square pyramidal and square bipyramidal coordination around the copper ion. The complexes studied were bis(N,N′-dimethylethylenediamine)copper(II) sulphate tetrahydrate, bis(N,N′-diethylethylenediamine)copper(II) nitrate, diaquosulphato(N,N,N′,N′-tetramethylethylenediamine)copper(II) hydrate, dinitrato(N,N,N′,N′-tetramethylethylenediamine)copper(II), dichloro(N,N,N′,N′-tetramethylethylenediamine)copper(II) and dithiocyanato(N,N,N′,N′-tetramethylethylenediamine)copper(II). The ESR measurements were carried out in methanol, dimethyl sulphoxide, dimethylformamide and pyridine, at room and liquid nitrogen temperatures. The molecular orbital coefficients were estimated assuming an axial symmetry. The parameter χ proportional to the hyperfine constants shows a variation with the solvent for all these complexes. The χ values in solution are lower than the corresponding average χ values reported in the solid state for each complex. The solvent effect and the influence of 4s character in the ground state are discussed. The χ values, either calculated or reported, for a number of copper complexes for [4O], [3O, N], [2O, 2N], [O, 3N] and [4N] environments around copper(II) are presented.  相似文献   

6.
The imidazole derivatives (N,N‐bis(2‐ethyl‐5‐methyl‐imidazole‐4‐ylmethyl) amino‐propane (biap)) and its complexes containing cobalt or copper ion were synthesized in this study. The oxidation reaction of phenol with oxidant H2O2 catalyzed by the metallomicelle made of the complexes of imidazole groups and micelle (CTAB, Brij35, LSS) as the mimetic peroxidase was studied. The results show that the reaction rate for the catalytic oxidation of phenol increases by a factor of approximately 1×105 in the metallomicelle over that in the simple micelles or the pure buffer solution at pH=6.9 and 25°C. The catalytic effects changed with H2O2, temperature, pH, and surfactant kind in the catalytic reactive process are discussed. A kinetic mathematic model of the phenol oxidation catalyzed by the metallomicelle is proposed.  相似文献   

7.
Solvent extraction of copper(II) from sulfate medium with N-(2-hydroxybenzylidene)aniline is studied with the following parameters: pH, concentration of the extractant, nature of diluent, and temperature. The extraction of copper(II) proceeds by a cation exchange mechanism and the extracted species are CuL2 in cyclohexane and toluene and CuL2 with some CuL2HL in chloroform. The equilibrium constants have been calculated as well as thermodynamic parameters ΔH°, ΔS°, and ΔG°. The temperature effect on the solvent extraction of copper(II) with N-(2-hydroxybenzylidene)aniline in cyclohexane is discussed.  相似文献   

8.
Copper(II) and cobalt(II) complexes of salicylaldimine obtained by the condensation of N,N-diethyl-2-methyl-1,4-phenylenediamine with 3,5-di-tert-butyl-2-hydroxybenzaldehyde have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, cyclic voltammetry, and FT-IR and UV–Vis spectroscopy. The molecular structure of the title copper(II) complex was determined by the single crystal X-ray diffraction technique. The Cu(II) center is coordinated by four atoms of the donor set in a compressed tetrahedral trans-[N2O2] environment, which can be essentially ascribed to the presence of bulky fragments of the ligand. The computed bond valences of the copper verify +2 oxidation state and indicate that the copper bonds, in particular Cu–N bonds, are elongated due to steric effects from bulky substituents in the ligands, N-(4-diethylamino-2-methylphenyl). Intermolecular C–H···π interactions leading to centrosymmetric synthons serve to stabilize periodic organization of the molecules.  相似文献   

9.
Summary The ethylenediamine Schiff base derivative ofo-acetoacetylphenol, H4aapen, is a ligand able to form both mononuclear and dinuclear complexes with copper(II) ion. Mononuclear positional isomers can be obtained, having the copper in the O2O2 site and in the N2O2 site. The electrochemistry of these copper(II) complexes in dimethylsulfoxide shows that the two positional isomers are reduced at different potentials through an e.c.e. mechanism, in which a chemical reaction is coupled between two one-electron transfers, the N2O2 isomer being the less reducible. They also undergo complicated oxidation processes at high potentials, less significant in distinguishing the two isomers. The electrochemical behaviour of the dinuclear copper(II) complex parallels that of the two mononuclear isomers.  相似文献   

10.
Fe(III), Co(II), Ni(II), and Cu(II) complexes of the title azodyes have been synthesized and characterized by elemental analysis, molar conductance, TGA, DTA, magnetic susceptibility measurements, IR, electronic and ESR spectral studies. The spectral studies suggest an octahedral geometry for Fe(III) and Co(II) complexes but a square planar geometry for Ni(II) and Cu(II) complexes. The kinetics of the catalysed oxidation of N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride (TMPPD) with mononuclear and binuclear copper complexes were studied to check the activity of these copper complexes in oxidizing organic amines. The electrochemical behaviour of the metal complexes was studied using DC polarography and cyclic voltammetry. Antimicrobial activity of the azo compounds and its complexes have been tested against different microorganisms.  相似文献   

11.
Summary. Fe(III), Co(II), Ni(II), and Cu(II) complexes of the title azodyes have been synthesized and characterized by elemental analysis, molar conductance, TGA, DTA, magnetic susceptibility measurements, IR, electronic and ESR spectral studies. The spectral studies suggest an octahedral geometry for Fe(III) and Co(II) complexes but a square planar geometry for Ni(II) and Cu(II) complexes. The kinetics of the catalysed oxidation of N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride (TMPPD) with mononuclear and binuclear copper complexes were studied to check the activity of these copper complexes in oxidizing organic amines. The electrochemical behaviour of the metal complexes was studied using DC polarography and cyclic voltammetry. Antimicrobial activity of the azo compounds and its complexes have been tested against different microorganisms.  相似文献   

12.
A kinetic study has been carried out on the oxidation of N, N, N′, N′,-tetraethyl-p-phenylenediamine (TEPD) by metal ion like Ce4+, oxoanions viz., MnO4? and Cr2O72?; peroxides such as peroxomonosulphate (PMS), peroxodisulphate (PDS), and H2O2; and halogens namely Cl2, Br2, and I2. The fast kinetics of the formation and decay of the radical cation TEPD˙+ have been analyzed at 565 nm by the stopped-flow technique under pseudo-first-order conditions. From the kinetic data, it has been inferred that the reactions were found to be of first-order with respect to [TEPD] and [oxidant] but over all it has been of second-order. The observed second-order rate constants in both the formation and decay of TEPD˙+ has been correlated with the oxidation potentials of the various oxidants employed in this study. The effect of pH on the oxidation has been investigated in the formation and decay of TEPD˙+ as well as reduction studies have also been carried out using dithionite which has been found to regenerate the TEPD from the TEPD˙+ and the corresponding rate constant has also been determined. Besides these, this article also explains how the TEPD, which forms TEPD˙+ acts as a better electron relay than TMPD(N, N, N′, N′-tetramethyl-p-phenylenediamine) which forms TMPD˙+, even though both of them undergo one-electron oxidation and are used in the chemical routes to solar energy conversions. The observed rate constants for electron transfer were correlated theoretically using Marcus theory. The observed and calculated rate constants have good correlation. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Bis(N‐(pyrrol‐2‐ylmethyl)‐N‐butyldithiocarbamato‐S,S′)copper(II) ( 1 ), bis(N‐(pyrrol‐2‐ylmethyl)‐N‐(2‐phenylethyl)dithiocarbamato‐S,S′)copper(II) ( 2 ), bis(N‐methylferrocenyl‐N‐(2‐phenylethyl)dithiocarbamato‐S,S′)copper(II) ( 3 ) and bis(N‐furfuryl‐N‐methylferrocenyldithiocarbamato‐S,S′)copper(II) ( 4 ) were prepared and characterized using elemental analysis and infrared and UV–visible spectroscopies. X‐ray diffraction (XRD) studies on 3 show that each copper centre adopts the square planar geometry by the coordination of four sulfur atoms of the metalloligand N‐methylferrocenyl‐N‐(2‐phenylethyl)dithiocarbamate. The Cu? S distances are symmetrical and are in the range 2.293–2.305 Å. The supramolecular architecture in complex 3 is sustained in the solid state by C? H???π, C? H???S, Fe???Fe and H???H interactions. Density functional theory calculations were carried out for 3 . Anion (F?, Cl?, Br? and I?) binding studies with complex 1 were performed using cyclic voltammetry. Copper sulfide, copper–iron sulfide‐ 1 and copper–iron sulfide‐ 2 nanoparticles were prepared from complexes 2 , 3 and 4 , respectively, and they were characterized using powder XRD, transmission electron microscopy (TEM) and energy‐dispersive X‐ray, UV–visible, photoluminescence and infrared spectroscopies. TEM images of copper–iron sulfide‐ 1 and copper–iron sulfide‐ 2 reveal that the particles are spherical and oval shaped, respectively. Photocatalytic activities of as‐prepared nanoparticles were studied by decolourization of methylene blue and rhodamine‐B under UV light. It was found that copper–iron sulfide degrades methylene blue and rhodamine‐B much better than does copper sulfide.  相似文献   

14.
The structures of three copper‐containing complexes, namely (benzoato‐κ2O,O′)[(E)‐2‐({[2‐(diethylamino)ethyl]imino}methyl)phenolato‐κ3N,N′,O]copper(II) dihydrate, [Cu(C7H5O2)(C13H19N2O)]·2H2O, 1 , [(E)‐2‐({[2‐(diethylamino)ethyl]imino}methyl)phenolato‐κ3N,N′,O](2‐phenylacetato‐κ2O,O′)copper(II), [Cu(C8H7O2)(C13H19N2O)], 2 , and bis[μ‐(E)‐2‐({[3‐(diethylamino)propyl]imino}methyl)phenolato]‐κ4N,N′,O:O4O:N,N′,O‐(μ‐2‐methylbenzoato‐κ2O:O′)copper(II) perchlorate, [Cu2(C8H7O2)(C12H17N2O)2]ClO4, 3 , have been reported and all have been tested for their activity in the oxidation of d ‐galactose. The results suggest that, unlike the enzyme galactose oxidase, due to the precipitation of Cu2O, this reaction is not catalytic as would have been expected. The structures of 1 and 2 are monomeric, while 3 consists of a dimeric cation and a perchlorate anion [which is disordered over two orientations, with occupancies of 0.64 (4) and 0.36 (4)]. In all three structures, the central Cu atom is five‐coordinated in a distorted square‐pyramidal arrangment (τ parameter of 0.0932 for 1 , 0.0888 for 2 , and 0.142 and 0.248 for the two Cu centers in 3 ). In each species, the environment about the Cu atom is such that the vacant sixth position is open, with very little steric crowding.  相似文献   

15.
Novel complexing processes in the CuII-thiocarbohydrazide-diacetyl triple system proceeding to a copper(II)hexacyanoferrate gelatin-immobilized matrix system in contact with aqueous-alkaline (pH 12) solutions containing thiocarbohydrazide and diacetyl, have been studied. It has been shown that mild template synthesis of copper(II) coordination compounds with (N,S,N,S)- and (N,N,N,N)- tetradentate ligands - 4,5-dimethyl-2,3,6,7-tetraazaoctadien-3,5-dithiohydrazide-1,8 and 3,10-dithio--6,7,13,14-tetramethyl-1,2,4,5,8,9,11,12-octaazacyclotetradecatetraene-1,5,7,12 take place, respectively. At the same time, the complexing process in the system under examination, when it occurs in aqueous-ethanol solution between CuCl2 and the organic compounds indicated, leads to copper(II) coordination compounds with another (N,S,N,S)-tetradentate ligand - 3,9,10,16-tetramethyl-6,13--dimercapto-2,17-dioxo-4,5,7,8,11,12,14,15-tetraazaoctadecahexaene - 3,6,8,10,12,15. In both cases, thiocarbohydrazide and diacetyl are ligand synthons in these complexing processes.  相似文献   

16.
Copper(I) halides dissolve in deoxygenated methylene chloride and nitrobenzene solutions of equimolar N,N,N′-triethylethylenediamine (TriEED) to give air-sensitive colorless or pale yellow copper(I) dimers [(TriEED)(μ-X)Cu]2, X = Cl, Br or I. Dioxygen uptake, analytical, cryoscopic and spectral data show that copper(I) dimers are oxidized to μ-oxo complexes, [(TriEED)2(μ-X)2(μ-O)Cu2], which react with carbon dioxide to form μ-carbonato analogues, [(TriEED)2X2(μ-CO3)Cu2]. Both oxo and carbonato complexes are homogeneous oxidative coupling catalysts for oxidation of 2,6-dimethylphenol to mixture of diphenoquinone (DPQ) and polyphenyleneoxide (PPO). Kinetic data for oxidation of [(TriEED)(μ-X)Cu]2 by dioxygen in nitrobenzene obey the third-order rate law d[[(TriEED)2(μ-X)2(μ-O)Cu2]]/dt = k D[[(TriEED)(μ-X)Cu]2]2[O2]. Comparison of the kinetic data with data for oxidation of [(TEED)(μ-Br)Cu]2, TEED = N,N,N′,N′-tetraethylethylenediamine (the fully alkylated diamine), by dioxygen indicate that N–H in (TriEED) speeds the reaction by a factor of 220 due to an intermolecular attractive force between N–H of (TriEED) and the incoming dioxygen, helping to assemble the activated complex.  相似文献   

17.
Summary Copper(II) and iron(III) complexes of 2-acetylpyridineN-oxide4 N-ethyl- and4 N-diethylthiosemicarbazones have been prepared and characterized by physical and spectral methods. The4 N-ethyl-derivative coordinates as a neutral, bidentate ligand with copper(II), and the4 N-diethyl- as an anionic, tridentate ligand with both copper(II) and iron(III). The former ligand forms a mixed ligand complex (i.e., one neutral and one anionic ligand) with iron(III).  相似文献   

18.
The redox properties of the title mono- and binuclear copper(II) chelates have been investigated by cyclic voltammetry in DMF at a working platinum electrode. The cathodic reduction and anodic oxidation of the investigated chelates produced the corresponding electrochemical CuI and CuIIIspecies stable only in the voltammetric time scale, The effects of substituents on E1/2, redox properties and stability towards oxidation of the complexes were related to the electron-withdrawing or releasing ability of the substituents on the C=N1[H, CH3 or C6H5] and/or N4H [H, C2H5, C6H5 or pClC6H4] groups, The electron attracting substituents stabilize the Cu(II) complexes while electron-donating groups favor oxidation to Cu(III). Changes in the E1/2 for the complexes due to remote substituent effects could be related to changes in basicity of N4H.Thus, variation in N41-J has more influence on E1/2 than changes in C=N1. The correlation between E1/2 of the complexes and pKa of the ligands has been attributed to the spherical potential generated by the electron density of the donor atoms at the antibonding d orbitals.  相似文献   

19.
A series of Cu(II), Co(II), and Ni(II) complexes of bis-(3,5-dimethyl-pyrazolyl-1-methyl)-(3-phosphanyl-propyl)-amine C15H26N5P (1), prepared from 3-aminopropylphosphine and 1-hydroxymethyl-3,5-dimethylpyrazole were characterized. The nature of bonding and the geometry of the complexes have been deduced from elemental analysis, infrared, electronic, 1H NMR, 31P NMR spectra, magnetic susceptibility, and conductivity measurements. The studies indicate octahedral geometry for nickel complex and square pyramidal geometry for copper and cobalt complexes. The EPR spectra of copper complex in acetonitrile at 300 K and 77 K were recorded. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus by well-diffusion method. The zone of inhibition values were measured at 37°C for a period of 24 h. The electrochemical behavior of copper complexes was studied by cyclic voltammetry. Catalytic study indicates the copper complex has efficient catalytic activity in oxidation of amitriptyline.  相似文献   

20.
The building of robust and versatile inorganic scaffolds with artificial metallo-nuclease (AMN) activity is an important goal for bioinorganic, biotechnology, and metallodrug research fields. Here, a new type of AMN combining a tris-(2-pyridylmethyl)amine (TPMA) scaffold with the copper(II) N,N′-phenanthrene chemical nuclease core is reported. In designing these complexes, the stabilization and flexibility of TPMA together with the prominent chemical nuclease activity of copper 1,10-phenanthroline (Phen) were targeted. A second aspect was the opportunity to introduce designer phenazine DNA intercalators (e.g., dipyridophenazine; DPPZ) for improved DNA recognition. Five compounds of formula [Cu(TPMA)(N,N′)]2+ (where N,N′ is 2,2-bipyridine (Bipy), Phen, 1,10-phenanthroline-5,6-dione (PD), dipyridoquinoxaline (DPQ), or dipyridophenazine (DPPZ)) were developed and characterized by X-ray crystallography. Solution stabilities were studied by continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE), and Davies electron–nuclear double resonance (ENDOR) spectroscopies, which demonstrated preferred geometries in which phenanthrene ligands were coordinated to the copper(II) TPMA core. Complexes with Phen, DPQ, and DPPZ ligands possessed enhanced DNA binding activity, with DPQ and DPPZ compounds showing excellent intercalative effects. These complexes are effective AMNs and analysis with spin-trapping scavengers of reactive oxygen species and DNA repair enzymes with glycosylase/endonuclease activity demonstrated a distinctive DNA oxidation activity compared to classical Sigman- and Fenton-type reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号