首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversed phase liquid chromatography of alkyl-imidazolium ionic liquids   总被引:2,自引:0,他引:2  
Eleven 1-alkyl-3-methyl imidazolium ionic liquid (IL) salts were analyzed in reversed phase mode with a Kromasil C18 column. The mobile phases were water-rich acetonitrile solutions (water content > or =70%, v/v) without any added salts. It is shown that it is possible to separate different ILs sharing the same cation and differing by the anion when salt-free mobile phases are used. When a buffer, acetate or phosphate salt, or any salt, such as sodium chloride or sodium tetrafluorobarate, is added to the mobile phase, the ILs differing only by their anions cannot be separated. ILs with different alkyl chains in the imidazolium cation are separated by mobile phases with or without added salts following a hydrophobic interaction behavior: log k is proportional to nC, the carbon number of the alkyl chain. Important differences in ion/stationary phase interactions are observed depending on the ionic content of the mobile phase. With salt-free mobile phases, the IL/C18 stationary phase interactions correspond to concave isotherms associated with fronting peaks for all ILs. With mobile phase containing 0.01 M of salt, tailing IL peaks correspond to convex adsorption isotherms. Also, the IL retention factor depends on the concentration and nature of the added salt. Hexafluorophosphate chaotropic anions can adsorb on the Kromasil C18 surface dramatically increasing the imidazolium cation retention factors.  相似文献   

2.
The retention behavior of selected alkaloids from different classes was studied. The effect of chaotropic salts additives to the mobile phase on chromatographic parameters of protonated basic analytes was investigated on Zorbax Extend-C18 column. The influence of the type of salts and their concentration on retention, efficiency, peak symmetry and separation selectivity of investigated alkaloids was established. Buffered acetonitrile-water mobile phase was chosen because of significant retention of added liophilic ions due to strong dispersive pi-pi interactions. These conditions are responsible for great contribution of electrostatic forces in the retention of protonated bases. The addition of salt, such as hexafluorophosphate, perchlorate, trifluoroacetate leads to the increase in retention, efficiency and separation selectivity of examined analytes. The influence of added salts on increase in retention parameters could be expressed as follows: H2PO4- < CF3COO- < ClO4- < PF6-. This order is in agreement with ability of salts to "salting-in" effect according to Hofmeister series. Obtained chromatograms of alkaloids mixture illustrate suitability of chaotropic effect to improve their separation selectivity.  相似文献   

3.
Ionic liquids (ILs) are promising gas chromatography (GC) stationary phases due to their high thermal stability, negligible vapor pressure, and ability to solvate a broad range of analytes. The tunability of ILs allows for structure modification in pursuit of enhanced separation selectivity and control of analyte elution order. In this study, the solvation parameter model is used to characterize the solvation interactions of fifteen ILs containing various cationic functional groups (i.e., dimethylamino, hydroxyl, and ether) and cation types paired with various counter anions, namely, tris(pentafluoroethyl)trifluorophosphate (FAP(-)), bis[(trifluoromethyl)sulfonyl]imide (NTf(2)(-)), thiocyanate (SCN(-)), tricyanomethide (C(CN)(3)(-)), tetracyanoborate (B(CN)(4)(-)), and bis[oxalate(2-)]borate (BOB(-)). The presence of functional groups affected the hydrogen bond basicity, hydrogen bond acidity, as well as dispersion interactions of the resulting ILs, while the change of cation type yielded modest influence on the dipolarity. The switch of counter anions in unfunctionalized ILs produced compounds with higher dipolarity and hydrogen bond basicity. The dipolarity and hydrogen bond basicity of ILs possessing cyano-containing anions appeared to be inversely proportional to the cyano content of the anion. The modification of IL structure resulted in a significant effect on the retention behavior as well as separation selectivity for many solutes, including reversed elution orders of some analytes. This study provides one of the most comprehensive examinations up-to-date on the relation between IL structure and the resulting solvation characteristics and gives tremendous insight into choosing suitable ILs as GC stationary phases for solute specific separations.  相似文献   

4.
Sodium hexafluorophosphate, perchlorate and tetrafluoroborate were applied as the ion‐pair reagents in reversed‐phase chromatography of several imidazolium‐based ionic liquids. The optimization of the retention was performed by changing the kind of organic modifier (methanol, acetonitrile), concentration and the kind of the ion‐pair reagents in the mobile phase and the column kind (Zorbax SB‐C18, Zorbax SB‐Phenyl, Zorbax SB‐CN, Zorbax SB‐NH2 and Supelcosil LC‐F). The selectivity of the proposed chromatographic systems according to the cation kind was compared on the basis of the resolution of ionic liquid mixture. The perturbation method was applied to identify the anion kind. The formation of ion‐associated complexes between promethazine as counter‐cation and chaotropic anions controlling their retention was confirmed.  相似文献   

5.
The salt effects on the water solubility of thermoresponsive hyperbranched polyethylenimine and polyamidoamine possessing large amounts of isobutyramide terminal groups (HPEI-IBAm and HPAMAM-IBAm) were studied systematically. Eight anions with sodium as the counterion and ten cations with chloride as the counterion were used to measure the anion and cation effects on the cloud point temperature (T(cp)) of these dendritic polymers in water. It was found that the T(cp) of these dendritic polymers was much more sensitive to the addition of salts than that of the traditional thermoresponsive linear polymers. At low anion concentration, the electrostatic interaction between anions and the positively charged groups of these polymers was dominant, resulting in the unusual anion effect on the T(cp) of these polymers in water, including (1) T(cp) of these dendritic polymers decreasing nonlinearly with the increase of kosmotropic anion concentration; (2) the chaotropic anions showing abnormal salting-out property at low salt concentration and the stronger chaotropes having much pronounced salting-out ability; (3) anti-Hofmeister ordering at low salt concentration. At moderate to high salt concentration, the specific ranking of these anions in reducing the T(cp) of HPEI-IBAm and HPAMAM-IBAm polymers was PO(4)(3-) > CO(3)(2-) > SO(4)(2-) > S(2)O(3)(2-) > F(-) > Cl(-) > Br(-) > I(-), in accordance with the well-known Hofmeister series. At moderate to high salt concentration, the specific ranking order of inorganic cations in reducing the T(cp) of HPEI-IBAm polymer was Sr(2+) ≈ Ba(2+) > Na(+) ≈ K(+) ≈ Rb(+) > Cs(+) > NH(4)(+) ≈ Ca(2+) > Li(+) ≈ Mg(2+). This sequence was only partially similar to the typical Hofmeister cation series, whereas at low salt concentration the cation effect on T(cp) of the dendritic polymer was insignificant and no obvious specific ranking order could be found.  相似文献   

6.
Highly hydrophilic compounds belonging to biogenic amines were analysed in the reversed-phase system, modified with the addition of ionic liquids: 1-ethyl-3-methyl-imidazolium hexafluorophosphate (EMIM PF(6)) and chaotropic salt NaPF(6) on Discovery HS C18 column at acidic conditions. The effect of the additives concentration and the presence of organic solvent on the analytes' chromatographic parameters such as retention factor, tailing factor and theoretical plates number were all determined. On the basis of k versus ionic liquid concentration in aqueous-organic mobile phase with constant amount of phosphate buffer, retention mechanism was studied. It was established that the presence of organic solvent with low dielectric constant and ionic liquid with both chaotropic ions allows achieving typical Langmuir shape of this relationship. Investigated mobile phase additives are comparable according to efficiency and selectivity towards biogenic amines analysis. However, the sensitivity was found to be better for the eluent system modified with chaotropic salt.  相似文献   

7.
Electrostatic ion chromatography, also known as zwitterionic ion chromatography, has been predominantly used for the analysis of anions. Consequently, separation mechanisms proposed for this technique have been based on anion retention data obtained using a sulfobetaine-type surfactant-coated column. A comprehensive cation retention data set has been obtained on a C18 column coated with the zwitterionic surfactant N-tetradecylphosphocholine (which has the negatively and positively charged functional groups reversed in comparison to the sulfobetaine surfactants), with mobile phases being varied systematically in the concentration and species of both the mobile-phase anion and cation. A retention mechanism based on both an ion exclusion effect and a direct (chaotropic) interaction with the inner negative charge on the zwitterion is proposed for the retention of cations. Despite the relatively low chaotropic nature of cations compared with anions, the retention data shows that cations are retained in this system predominantly due to a chaotropic interaction with the inner charge, analogous to anions in a system where the C18 column is coated with a sulfobetaine-type surfactant. The retention of an analyte cation, and the effect of the mobile-phase anion and cation, can be predicted by the relative positions of these species on the Hofmeister (chaotropic) series.  相似文献   

8.
Anionic species with ion pair forming ability are commonly used to enhance the retention and efficiency of basic analytes in RPLC separations. However, little is known about the interactions between organic mobile phase modifiers and such ion pairing anions. In this work, we measured the magnitude of the retention increase of basic drugs and peptides upon addition of strong inorganic ion pairing anions (e.g. perchlorate) as a function of the volume fraction of modifier in acidic water-acetonitrile mobile phases on two different stationary phases. We found that the increase in retention upon addition of various salts depended strongly on the eluent strength. In general, larger retention increases upon addition of the anion were observed at higher organic fractions. Regression of retention against the volume fraction of organic modifier indicated that the ion pair forming anions substantially decreased S values while only slightly changing ln k'w values. The decrease in S is the major cause of the retention increase of basic drugs and peptides when such anions are added to the mobile phase.  相似文献   

9.
Separation of twelve enkephalins was investigated on a quaternary ammonium-embedded stationary phase (Stability BS-C23). Variation of buffer pH of the mobile phase highlighted the complex relationship between repulsive/attractive electrostatic interactions and the reversed-phase partitioning mechanism. The effect of three different anions employed as additives (phosphate, chloride and perchlorate) was examined at various concentrations and two pH values (acidic and neutral). At pH 2.5, an increase in the anion eluent concentration resulted in a higher retention factors of positively charged enkephalins. This effect was more pronounced when perchlorate ions were added to the mobile phase rather than phosphate and chloride ions, due to chaotropic and ion-pairing effects. In contrast, at pH 7.5, retention factors of negatively charged enkephalins decreased when these salts were added, due to an anion-exchange mechanism. Perchlorate caused a sharper decrease than chloride and phosphate anions did. The results presented here provide insight into the possible adjustment of retention and separation of peptides on a mixed-mode stationary phase (BS-C23) by a careful control of the buffer pH, the nature and concentration of anions, added to the buffer, and organic modifier content.  相似文献   

10.
The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.  相似文献   

11.
The addition of salts, specifically sodium perchlorate (NaClO4), to mobile phases at acidic pH as ion-pairing reagents for reversed-phase high-performance liquid chromatography (RP-HPLC) has been generally overlooked. To demonstrate the potential of NaClO4 as an effective anionic ion-pairing reagent, we applied RP-HPLC in the presence of 0-100 mM sodium chloride (NaCl), sodium trifluoroacetate (NaTFA) or NaClO4 to two mixtures of synthetic 18-residue peptides: a mixture of peptides with the same net positive charge (+4) and a mixture of four peptides of +1, +2, +3 and +4 net charge. Interestingly, the effect of increasing NaClO4 concentration on increasing peptide retention times and selectivity changes was more dramatic than that of either NaCl or NaTFA, with the order of increasing anion effectiveness being Cl- < TFA- < C104-. Such effects were more marked when salt addition was applied to eluents containing 10 mM phosphoric acid (H3PO4) compared to 10 mM trifluoroacetic acid (TFA) due to the lesser starting anion hydrophobicity of the former mobile phase (containing the phosphate ion) compared to the latter (containing the TFA- ion).  相似文献   

12.
The interest of using ionic liquids (ILs) as stationary phases in gas chromatography (GC) has increased in recent years. This is largely due to the fact that new classes of ILs are being developed that are capable of satisfying many of the requirements of GC stationary phases. This review highlights the major requirements of GC stationary phases and describes how molten salts/ILs can be designed to largely meet these needs. The retention characteristics of organic solutes will be discussed for ammonium, pyridinium, and phosphonium-based molten salts followed by imidazolium, pyridinium, pyrollidinium, and phosphonium-based IL stationary phases. The versatility of ILs allows for the development of stationary phases based on dicationic ILs, polymeric ILs, and IL mixtures. To aid in choosing the appropriate IL stationary phase for a particular separation, the reader is guided through the different types of stationary phases available to identify those capable of providing the desired separation selectivity of organic solutes while allowing for flexibility in ranges of temperature used throughout the separation.  相似文献   

13.
New synthesized 1,4‐disubstituted thiosemicarbazide derivatives were analyzed in the RP system, modified with the addition of salts; chaotropic (sodium hexafluorophosphate – Na PF6), cosmotropic (sodium phosphate – NaH2PO4), and neutral (NaCl) on Zorbax XDB C18 column. The effect of the eluent composition on the analytes retention (k), system efficiency (N), peak symmetry (As), and LOD values were all examined and compared to unmodified organic‐aqueous mobile phase system. It was established that eluent modified with chaotropic salts addition was also the most advantageous according to other peak parameters such as the theoretical plates numbers and asymmetry factors. The lower LOD values were achieved in comparison to unmodified organic‐aqueous eluent system. Compatibility of lipophilicity parameters calculated by the use of computer software with experimental ones measured by RP‐HPLC was also the best for chaotropic modified mobile phase. To explain the observed phenomena, molecular modeling was performed for chosen representative compound in different environment representing examined mobile phase composition.  相似文献   

14.
Fast isocratic reversed-phase high-performance liquid chromatographic (RP-HPLC) separation of four tetracyclines and flumequine was obtained using a Zorbax SB-C18 column. Baseline resolution was achieved in 11 min. The peaks were narrow, well separated and without any tails although there was no chelating agents added to the mobile phase. Due to the chaotropic effect, the addition of potassium perchlorate allowed controlling the tetracyclines retention while the retention of flumequine was almost constant.  相似文献   

15.
In a previous report, the influence of the pH, the concentration, and the nature of the buffer on the retention and overloading behavior of propranolol (pKa = 9.45) was studied on Kromasil-C18 at 2.75 < pH < 6.75, using four buffers (phosphate, acetate, phthalate, and succinate), at three concentrations, 6, 20, and 60 mM. The results showed that the propranolol cation was eluted as an ion-pair with the buffer counter-anion. A similar study was carried out with Symmetry-C18 and Xterra-C18. Two additional buffers, formate and citrate, were also used. Propranolol elution band profiles were recorded for a small (less than 1 microg) and a large (375 microg) sample size. The results are similar to those obtained with Kromasil and confirm earlier conclusions. The buffer concentration, not its pH, controls the retention time of propranolol, in agreement with the chaotropic model. The retention factor depends also on the nature of the buffer, particularly on its valence, and on the hydrophobicity of the basic anion. With the monovalent anions HCOO- (pH 3.75), H2PO4- (pH 2.75), HOOC-Ph-COO- (pH 2.75), HOOC-CH2-CH2-COO- (pH 4.16), CH3COO- (pH 4.75) and HOOC-CHCOOH-COO- (pH 3.14), at moderate loadings, and for the two larger buffer concentrations, the band profiles are well accounted for by a simple bi-Langmuir isotherm model (no adsorbate-adsorbate interactions). By contrast, these profiles are accounted for by a bi-Moreau isotherm model (i.e., with significant adsorbate-adsorbate interactions) with the bivalent anions -OOC-Ph-COO- (pH 4.75), -OOC-CH2-CH2-COO- (pH 5.61), HPO4(2-) (pH 6.75), and HOOC-CHCOO(-)-COO- (pH 4.77) and with the trivalent anion -OOC-CHCOO(-)-COO- (pH 6.39). The best values of the isotherm parameters were determined using the inverse method. The saturation capacity and the equilibrium constant on the low-energy sites increase with increasing buffer concentration, a result consistent with the formation in the mobile phase of a hydrophobic complex between the propranolol cation and the buffer anion. With bivalent and trivalent anions, adsorbate-adsorbate interactions are strong on the low-energy sites but they remain negligible on the high-energy sites. The density of the high energy sites is lower and the equilibrium constant on the low-energy sites are both higher with the bivalent and the trivalent buffer anions than with the univalent buffer anions. These results are consistent with the formation of a 2:1 and a 3:1 propranolol-buffer complex with the bivalent and the trivalent anions, respectively.  相似文献   

16.
Adsorption data of an organic cation (propranololium chloride) and an organic anion (sodium 1-naphthalene sulfonate) were measured by frontal analysis on two RPLC adsorbents, Symmetry-C18 and XTerra-C18, with aqueous solutions of methanol as the mobile phases. The influence of supporting neutral salts on the adsorption behavior of these two ions are compared. The Henry constants are close (H approximately 5). The four sets of isotherm data are all well accounted for using the bi-Moreau model. However, the isotherms of the two ions behave differently at high concentrations. The initial behaviors of all the isotherms are antilangmuirian but remain so in a much wider concentration range for the cation than for the anion, due to its stronger adsorbate-adsorbate interactions on the low-energy adsorption sites. The retention times of both ions increase with increasing concentration of neutral salt in the mobile phase, suggesting the formation of ion-pair complexes, with Cl- for the cation and with Na+ for the anion. The adsorbate-adsorbate interactions vanish in the presence of salt and the bi-Moreau isotherm model tends toward a bi-Langmuir model. Differences in adsorption behavior are also observed between the cation and the anion when bivalent inorganic anions and cations, respectively, are dissolved in the mobile phase. High concentration band profiles of 1-naphthalene sulfonic acid are langmuirian, except in the presence of a trivalent cation, while those of propranolol are antilangmuirian under certain conditions even with uni- or divalent cations.  相似文献   

17.
Newly synthesised fluorescent chemosensor ADDTU contains the thiourea receptor connected to the acridinedione (ADD) fluorophore via a covalent bond, giving rise to a fluorophore-receptor motif. In this fluorescent chemosensor, the anion recognition takes place at the receptor site which result in the concomitant changes in the photophysical properties of a ADD fluorophore by modulation of photoinduced electron transfer (PET) process. The binding ability of these sensor with the anions F(-), Cl(-), Br(-), I(-), HSO(4)(-), ClO(4)(-), AcO(-), H(2)PO(4)(-) and BF(4)(-) (as their tetrabutylammounium salts) in acetonitrile were investigated using UV-vis, steady state and time-resolved emission techniques. ADDTU system allows for the selective fluorescent sensing of AcO(-), H(2)PO(4)(-) and F(-) over other anions in acetonitrile.  相似文献   

18.
A novel colorimetric sensor based on 8-hydroxy quinoline-5-azo-4'-nitrobenzene (1) was prepared and used for recognizing anions. 1 and its metal complex (1.Co) were found to show response to anions such as CH(3)CO(2)(-), H(2)PO(4)(-), HSO(4)(-), F(-) and dramatic color changes were observed. The selectivity and sensitivity of 1 and 1.Co for sensing anions were different, which was in the order of CH(3)CO(2)(-)>F(-)>H(2)PO(4)(-)>HSO(4)(-) for 1 and H(2)PO(4)(-)>HSO(4)(-)>CH(3)CO(2)(-) approximately F(-) for 1.Co, respectively. In CH(3)CN, sensor 1.Co exhibited excellent specificity toward H(2)PO(4)(-), and the color variety was dependent on the concentration of H(2)PO(4)(-) which was attributed to anion structure and stability of anionic complex (1-anion), metal complex (1-Co) and inorganic complex (Co-anion).  相似文献   

19.
A series of structurally novel anion receptors , , and in which a ferrocene unit and a fluorescent moiety are linked to two imidazolium rings have been designed and prepared from 1,1'-bis(imidazolylmethyl)ferrocene. Their crystal structures revealed that these receptors are capable of incorporating anions such as PF(6)(-) and Br(-). Consequently, the anion binding studies were carried out using various techniques including electrochemistry (CV and OSWV), fluorescence, UV-vis, and (1)H NMR spectroscopy. All the receptors showed a special electrochemical response to the F(-) anion with a remarkable cathodic shift of more than 260 mV and displayed a unique selectivity for F(-) and AcO(-) anions with fluorescence enhancement over various other anions of present interest (Cl(-), Br(-), I(-), HSO(4)(-), H(2)PO(4)(-)). In addition, for receptor , obvious absorption changes were observed when the H(2)PO(4)(-) anion was added while other anions (F(-), Cl(-), Br(-), I(-), AcO(-), HSO(4)(-)) showed only a minor influence on the UV-vis spectra. (1)H NMR titrations demonstrated that receptors and can bind anions through (C-H)(+)X(-) hydrogen bonds and showed strong affinity and high selectivity for the AcO(-) anion in acetonitrile.  相似文献   

20.
Herein we report a new class of low-melting ionic liquids (IL) that consist of N,N,N-trialkylammonioundecahydrododecaborates(1-) as the anion and a range of cations. The cations include the common cations of conventional ILs such as tetraalkylammonium, N-alkylpyridinium, and N-methyl-N'-alkylimidazolium. In addition, their salts with lithium, potassium, and proton cations also exist as ILs. Pulse radiolysis studies indicate that the anions do not react with solvated electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号