首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为改善多壁碳纳米管(MWCNTs)在环氧树脂(EP)中的分散性和界面性质,以1-乙烯基-3-丁基咪唑六氟磷酸盐([VBIM]PF6)为单体合成聚离子液体(PIL),用于MWCNTs的表面改性.用热重分析(TG),拉曼光谱(Raman)和扫描电镜(SEM)对改性碳纳米管(PIL-CNTs)进行了表征.结果表明,PIL可吸附在MWCNTs表面且不改变MWCNTs的电子结构.与原始MWCNTs相比,PIL-CNTs在丙酮中的分散性更好.在EP中加入0.5 wt%的PIL-CNTs,以4,4'-二氨基二苯甲烷(DDM)为固化剂制备环氧树脂固化物.动态力学(DMA)研究表明,PIL-CNTs提高了EP的储能模量,玻璃化温度比纯EP和MWCNTs/EP分别提高了5.6℃和3.3℃;PILCNTs/EP的拉伸强度,弯曲强度和冲击强度较纯EP分别提高了35.2%,26.4%和45.0%.拉伸断面的SEM可看出PIL-CNTs在复合材料中的分散性和与环氧树脂基体的界面结合力均优于原始MWCNTs.  相似文献   

2.
为改善多壁碳纳米管的表面性能及分散性能,将低聚的氨基为端基的低分子量的对位芳纶(PPTA)与羧基碳纳米管(MWCNTs-COOH)反应,制备了低聚PPTA化学修饰的多壁碳纳米管PPTAMWCNTs-x,并对其结构进行了表征.研究结果表明,与MWCNTs-COOH相比,PPTA-MWCNTs-x在二甲基亚砜(DMSO)、氮甲基吡咯烷酮(NMP)、乙醇等有机溶剂中具有更好的稳定性和分散性,其稳定时间可分别长达216和240 h.本文以廉价的聚氯乙烯(PVC)为样板聚合物,采用浇铸法制备了碳纳米管/聚合物复合材料,比较了改性前后多壁碳纳米管对PVC薄膜力学性能的影响,并探讨了其增强机理.结果显示,与纯PVC薄膜相比,当PPTA-MWCNTs-x添加量为0.25 wt%时,可使PVC复合膜的杨氏模量和拉伸强度分别提高44.4%和79.4%;当PPTA-MWCNTs-x添加量为0.05 wt%时,可使PVC复合膜断裂应变提高203.6%.  相似文献   

3.
为获得结构完整、 性能优良的纳米碳纤维前驱体, 采用静电纺丝法制备了掺杂羧基化多壁碳纳米管(MWCNTs)的聚丙烯腈(PAN)纳米纤维. 用扫描电子显微镜、 偏振红外光谱、 透射电子显微镜、 拉曼光谱及拉伸性能测试等对杂化纳米纤维的微观结构和力学性能进行了研究, 分析了MWCNTs含量的影响. 实验结果表明, 5%(质量分数)的MWCNTs掺杂量为杂化纳米纤维直径的突变点, 且MWCNTs的加入有利于PAN分子链的取向, MWCNTs在PAN纤维中大体上沿纤维轴向取向分布. 3%MWCNTs/PAN杂化纳米纤维的拉伸强度和拉伸模量分别达到88.6 MPa和3.21 GPa.  相似文献   

4.
张晶  赵晓  刘长鹏  邢巍 《电化学》2012,18(3):270-274
用聚乙烯吡咯烷酮(PVP)修饰的多壁碳纳米管(MWCNTs)作为Pd纳米粒子的载体,制得了Pd/PVP-MWCNTs催化剂并研究了其对甲酸氧化的电催化性能. 红外光谱仪(FTIR)和透射电镜(TEM)观测结果表明,Pd/PVP-MWCNTs催化剂中的Pd纳米粒子平均粒径小、分散性好. 因此,Pd/PVP-MWCNTs催化剂对甲酸电氧化有很好的电催化性能.  相似文献   

5.
设计了一种夹心型电化学免疫传感器,以金负载二氧化锡石墨烯(GS-SnO2-Au)为检测平台,铂氧化铜负载多壁碳纳米管(Pt@CuO-MWCNTs)为标记物,用于乙肝表面抗原(HBs)的定量检测。GS-SnO2-Au具有较高比表面积,良好的导电性、分散性和生物相容性,有利于捕获大量抗体(Ab1)。Pt、CuO和多壁碳纳米管对H2O2分解均具有催化性,Pt@CuO-MWCNTs复合物能协同放大催化作用,实现多重放大信号的效果,有利于实现高灵敏检测。通过透射电镜表征GS-SnO2-Au和Pt@CuO-MWCNTs的形貌特征。结果表明,基底材料和标记物材料的性能良好。在最佳实验条件下:磷酸盐pH值7.4,GS-SnO2-Au的质量浓度为1 mg/mL,Pt@CuO-MWCNTs质量浓度为2 mg/mL,该免疫传感器对HBs的线性范围为0.001 ~ 100 ng/mL,检出限为0.33 pg/mL,对实际样品的加标回收率为99.8% ~ 100%,相对标准偏差(RSD)为1.1% ~ 1.5%。所设计的免疫传感器具有良好选择性、重现性和稳定性,在HBs的临床检测方面具有潜在应用价值。  相似文献   

6.
以聚醚砜(PES)为黏结剂, 多壁碳纳米管(MWCNTs)为芯层, 聚醚醚酮(PEEK)薄膜为皮层, 制备了具有 三明治结构的MWCNTs/PEEK电磁屏蔽复合材料. 研究结果表明, 将适量的黏结剂PES引入到MWCNTs芯 层中, 当芯层层数增加到3层时, 复合材料的平均厚度仅有0.28 mm, 其密度、 拉伸强度、 5%热失重温 度(Td,5%)、 导电率、 电磁屏蔽值及比电磁屏蔽值分别可以达到1.349 g/cm3, 80 MPa, 581.8 ℃, 2.6 S/cm, 32 dB及115 dB/mm, 是一种质量轻、 厚度薄、 机械性能好且电磁屏蔽性能高的复合材料. 其优异的综合性能主要归因于在三明治结构MWCNTs/PEEK复合材料的制备过程中, 在碳纳米管芯层中引入适量的聚醚砜作为黏结剂可以改善芯层内部碳纳米管之间及芯层与聚醚醚酮皮层之间的界面作用, 有利于芯层及芯层与皮层黏结成一个整体, 从而提高复合材料的机械性能; 同时, 芯层中碳纳米管互相搭接成密集导电网络又可以使得复合材料拥有较高的电磁屏蔽性能.  相似文献   

7.
罗亮  窦辉  郝迪  高思旖  张校刚 《化学学报》2011,69(14):1609-1616
以磁性离子液体1-丁基-3-甲基咪唑四氯化铁盐([bmim]FeCl4)为介质, 将多壁碳纳米管(MWCNTs)机械球磨分散在其中形成[bmim]FeCl4/MWCNTs凝胶后, 加入乙撑二氧噻吩(EDOT)单体, 利用阴离子 的氧化性进行原位聚合, 球磨法制备了均匀包覆不同含量MWCNTs的聚乙撑二氧噻吩/多壁碳纳米管(PEDOT/MWCNTs)纳米复合材料. 并以傅里叶红外光谱(FT-IR)、扫描电镜(SEM)和透射电镜(TEM)对PEDOT/MWCNTs的结构与形貌进行了表征|在0.5 mol/L硫酸溶液中, 用循环伏安测试(CV)研究了PEDOT/MWCNTs的电化学行为|采用四探针仪测定了PEDOT/MWCNTs的电导率|热重分析(TGA)研究了PEDOT/MWCNTs的热稳定性. 结果表明, PEDOT 纳米颗粒均匀包覆于MWCNTs表面, 形成了核壳结构|PEDOT与MWCNTs之间的共轭作用随着MWCNTs含量的增加而增强. MWCNTs的质量分数为30%的PEDOT/MWCNTs的电导率出现峰值, 达到7.46 S/cm, 且电化学活性最好. MWCNTs的质量分数为10%时, PEDOT/MWCNTs的热稳定性相对于PEDOT显著提高.  相似文献   

8.
将不同维度纳米填料同时复合,采用纵向氧化切割MWCNTs法制得不同含量比的氧化石墨烯纳米带-碳纳米管(GONRs-CNTs)2种维度纳米材料复合体,随后将上述填料加入到TPU基体中制得GONRsCNTs/TPU复合材料薄膜.采用FTIR、XRD、TG、XPS、TEM和FE-SEM研究了不同反应条件下所得GONRsCNTs复合体的结构及性能,并结合复合材料薄膜的氧气透过率和拉伸测试以及表面形貌观察,研究了GONRs与CNTs的协同作用、二者的含量比对TPU复合材料薄膜阻隔和力学性能的影响.研究表明,GONRs与CNTs的协同效应明显优于MWCNTs,同时当所加GONRs-CNTs复合体中GONRs与CNTs的含量比约为67∶33时,GONRs-CNTs/TPU复合材料薄膜的氧气透过率和拉伸强度相比纯TPU薄膜分别降低51.3%和提高29.3%,阻隔性能和力学性能均得到明显改善.  相似文献   

9.
乙二醇、草酸与马来酸酐通过熔融缩聚制备了一种新型生物基不饱和聚酯(UPOEM).以丙烯酸环氧大豆油(AESO)与甲基丙烯酸缩水甘油酯(GMA)的共混溶剂作为UPOEM的活性稀释剂,得到一系列黏度小、生物基含量较高、储存稳定、可与增强棉布浸润良好的生物基不饱和聚酯树脂胶液.黏度测试表明,GMA可明显降低AESO/UPOEM混合胶液的黏度,当GMA,AESO和UPOEM以质量比100∶100∶300共混时,得到的黄色透明树脂胶液的黏度小于780 m Pa·s,仅为原AESO和UPOEM共混胶液黏度的5.4%,并且可室温储存一个月以上仍保持均匀透明且黏度稳定.该胶液与增强棉布复合所得绿色复合材料的拉伸断裂强度接近30 MPa,玻璃化转变温度(Tg)可达90℃,热分解温度(Td,5%)在248℃以上,具有潜在应用价值.  相似文献   

10.
将多壁碳纳米管(MWCNTs)分散在壳聚糖(CTS)中并滴涂在玻碳电极表面,烘干后依次滴加血红蛋白(Hb)、DNA及CTS溶液.制成了壳聚糖/DNA/血红蛋白/多壁碳纳米管复合膜修饰的GCE(简示为CTS/DNA/Hb/MWCNTs/GCE)。采用方波伏安法及循环伏安法研究了膜内DNA的电化学行为。结果表明:在pH 5.8的磷酸盐缓冲溶液中,复合膜内的DNA在电极上于0.46 V(vs.SCE)处有一个明显的氧化峰,DNA氧化峰电流与其质量在1.0~5.0μg范围内呈线性关系,检出限(3S/N)为0.5μg。  相似文献   

11.
A mutilayered film was prepared by layer-by-layer (LBL) assembly of active ester modified multiwalled carbon nanotubes (MWCNTs) and poly(allylamine hydrochloride) (PAH). For this purpose, carboxylic groups on the surface of the oxidized MWCNTs were converted to the acyl chlorides by their reaction with thionyl chloride. Subsequent reaction of the acyl chlorides with pentafluorophenol formed the active esters. These active ester modified MWCNTs (MWCNTs-COOC 6F 5) were air-stable and moisture resistant, but showed a high reactivity toward primary or secondary amines resulting in amide bonds. For the preparation of a multilayered film, the surface of a quartz slide was first activated and sacrificial double layers of PAH and poly(sodium 4-styrene sulfonate) (PSS) were deposited. Subsequently, LBL assembly of MWCNTs-COOC 6F 5 and PAH was then conducted on these double layers [(PAH/PSS) 2]. In the process of the assembly, a reaction occurred between the active ester on the surface of MWCNTs and the amine groups of polyallylamine yielding amide bonds, which resulted in a mechanically stable thin film. A free-standing film was obtained after dissolving the sacrificial layer [(PAH/PSS) 2] in a concentrated aqueous NaOH solution. The surface resistance of the multilayered film with 20 bilayers decreased to around 10 kOmega while remaining a reasonable transparency (70% at 500 nm).  相似文献   

12.
王存  张毅  孟丽  赵欣  王跃 《分析测试学报》2017,36(9):1124-1128
采用滴涂法得到多壁碳纳米管(MWCNTs)修饰的玻碳电极(GCE),通过电沉积方法将3-氨基-5-巯基-1,2,4-三唑(TA)沉积在MWCNTs/GCE表面,制备了聚(3-氨基-5-巯基-1,2,4-三唑)/多壁碳纳米管修饰电极(p TA/MWCNTs/GCE)。采用循环伏安法(CV)和示差脉冲伏安法(DPV),研究了尿酸(UA)、黄嘌呤(XA)和次黄嘌呤(HX)在该修饰电极上的电化学行为。结果表明,该修饰电极对UA、XA和HX均有较好的电催化活性作用,能实现对3种物质的同时测定。UA、XA和HX在该修饰电极上的线性范围分别为9.0~739.0、2.0~259.0、1.0~353.0μmol/L;检出限分别为0.67、0.17、0.33μmol/L。该修饰电极已成功用于尿液和血清实际样品中UA、XA和HX的同时测定,回收率为98.8%~105.5%。  相似文献   

13.
In order to improve the dispersibility and interface properties of multi-walled carbon nanotubes (MWCNTs) in epoxy resin (EP), aromatic hyperbranched polyesters with terminal carboxyl (HBP) and aromatic hyperbranched polyesters with terminal amino groups (HBPN) were used for noncovalent functionalization of MWCNTs. Epoxy composites reinforced by different types of MWCNT were prepared. The effects of noncovalent functionalization of MWCNTs on the dispersibility, wettability, interface properties and mechanical properties of epoxy composites were investigated. The results show that the dispersibility and wettability of MWCNTs are significantly improved after noncovalent functionalization. A large number of terminal primary amines (NH2) on noncovalently functionalized MWCNT with HBPN (HBPN-MWCNT) form covalent bonds with EP matrix, and thus the interfacial adhesion is enhanced significantly, resulting in high load transfer efficiency and substantial increase in mechanical properties. The interface with covalent bonding formed between the flexible hyperbranched polyester layer on the surface of HBPN-MWCNT and the EP matrix promotes plastic deformation of the surrounding EP matrix. The toughening mechanisms of HBPN-MWCNT are MWCNT pull-out and a large amount of plastic deformation of the surrounding EP matrix.  相似文献   

14.
Polyimide (PI)‐based nanocomposites containing aminophenyl functionalized multiwalled carbon nanotubes (AP‐MWCNTs) obtained through a diazonium salt reaction was successfully prepared by in situ polymerization. PI composites with different loadings of AP‐MWCNTs were fabricated by the thermal conversion of poly(amic acid) (PAA)/AP‐MWCNTs. The mechanical and electrical properties of the AP‐MWCNTs/PI composites were improved compared with those of pure PI due to the homogeneous dispersion of AP‐MWCNTs and the strong interfacial covalent bonds between AP‐MWNTs and the PI matrix. The conductivity of AP‐MWNTs/PI composites (5:95 w/w) was 9.32 × 10?1 S/cm which was about 1015 times higher than that of Pure PI. The tensile strength and tensile modules of the AP‐MWCNTs/PI composites with 0.5 wt % of AP‐MWCNTs were increased by about 77% (316.9 ± 10.5 MPa) and 25% (8.30 ± 1.10 GPa) compared to those of pure PI, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 960–966  相似文献   

15.
This article reports an extensive investigation of the unique dispersion behavior of solutions with multi-walled carbon nanotubes (MWCNTs) and 3-hydroxy-2-napthoic acid (β-HNA) in tetrahydrofuran (THF) solvent, which results into a multifold enhancement in the electrical properties of polystyrene (PS). A number of solutions with 0.4% of MWCNTs (w/v) and β-HNA (0–1%, w/v) in THF were prepared separately. MWCNTs precipitated out in THF solvent shortly after the preparation and formed two distinct phase regions (2φ). Gratifyingly, addition of β-HNA solution to the MWCNTs solution offered an unprecedented enhancement in the dispersion of MWCNTs. Such dispersion in solutions with only 0.02% β-HNA (w/v) was found to be stable up to 2 weeks at room temperature. FTIR spectroscopy was incorporated to illustrate the adsorption of β-HNA onto the surface of carbon nanotubes (CNTs). After this successful dispersion, nanocomposites solutions comprising of 0.067% β-HNA (w/v), 6.7% PS (w/v), and varying concentrations of MWCNTs (0–0.33%, w/v) were prepared. A remarkable dispersion behavior of MWCNTs in the presence of polymer was also observed. Finally, thin films made up of consistent polystyrene/β-HNA concentrations and increasing amounts of MWCNTs were prepared by casting technique to investigate the influence of dispersion on the electrical properties of the film. The dispersion significantly affected the DC electrical conductivity and incorporation of 5% MWCNTs elevated the electrical conductivity up to 10 orders of magnitude with respect to neat PS.  相似文献   

16.
Effectively improving the mechanical properties and thermal resistance of epoxy shape‐memory polymers (ESMPs) without affecting their shape‐memory performance is necessary to expand these polymers in practical applications. In this article, modified multi‐walled carbon nanotubes (MWCNTs) were prepared and used as efficient reinforcement for enhancing the comprehensive properties of ESMPs. Increases of nearly 289% to 444% for impact strength and 112% to 184% for tensile force were obtained by adding only 0.1 to 1 wt% epoxy‐modified MWCNTs. The addition of unmodified and carboxyl‐modified MWCNTs was also investigated but showed less impact on the mechanical properties of the ESMPs than epoxy‐modified MWCNTs. Thermogravimetry analysis (TGA) and dynamic mechanical analyses (DMA) showed that less than 1 wt% modified MWCNTs can enhance the heat resistance of ESMPs greatly. Although the shape recovery time for composite materials increased upon adding the MWCNTs, the entire recovery time was still less than 1 minute, and the shape recovery rate was relatively high, nearly 100%.  相似文献   

17.
This research is aimed at characterizing the thermal, mechanical, and morphological properties of carbon nanotubes (CNTs) reinforced poly(amide-imide) (PAI) composites having thiazol and amino acid groups which were prepared by sonication-assisted solution compounding. To increase the compatibility between the PAI matrix and CNTs, carboxyl-functionalized multiwall CNTs (MWCNTs-COOH) were used in this study. The MWCNTs were dispersed homogeneously in the PAI matrix while the structure of the polymer and the MWCNTs structure are stable in the preparation process as revealed by transmission electron microscopy. MWCNT/PAI composite films have been prepared by casting a solution of precursor polymer containing MWCNTs into a thin film, and its tensile properties were examined. The thermal stability, Young’s modulus, and tensile strength of PAI were greatly improved by the incorporation of MWCNTs and their good dispersion. Composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal gravimetric analysis.  相似文献   

18.
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号