共查询到7条相似文献,搜索用时 0 毫秒
1.
To date, little data is available on the reproducibility of functional connectivity MRI (fcMRI) studies. Here, we tested the variability and reproducibility of both the functional connectivity itself and different statistical methods to analyze this phenomenon. In the main part of our study, we repeatedly examined two healthy subjects in 10 sessions over 6 months with fcMRI. Cortical areas involved in motor function were examined under two different cognitive states: during continuous performance (CP) of a flexion/extension task of the fingers of the right hand and while subjects were at rest. Connectivity to left primary motor cortex (lSM1) was calculated by correlation analysis. The resulting correlation coefficients were transformed to z-scores of the standard normal distribution. For each subject, multisession statistical analyses were carried out with the z-score maps of the resting state (RS) and the CP experiments. First, voxel based t tests between the two groups of fcMRI experiments were performed. Second, ROI analyses were carried out for contralateral right SM1 and for supplementary motor area (SMA). For both ROI, mean and maximum z-score were calculated for each experiment. Also, the fraction of significantly (P<.05) correlated voxels (FCV) in each ROI was calculated. To evaluate the differences between the RS and the CP condition, paired t tests were performed for the mean and maximum z-scores, and Wilcoxon signed ranks tests for matched pairs were carried out for the FCV. All statistical methods and connectivity measures under investigation yielded a distinct loss in left–right SM1 connectivity under the CP condition. For SMA, interindividual differences were apparent. We therefore repeated the fcMRI experiments and the ROI analyses in a group of seven healthy subjects (including the two subjects of the main study). In this substudy, we were able to verify the reduction of left–right SM1 connectivity during unilateral performance. Still, the direction of SMA to lSM1 connectivity change during the CP condition remained undefined as four subjects showed a connectivity increase and three showed a decrease. In summary, we were able to demonstrate a distinct reduction in left–right SM1 synchrony in the CP condition compared to the RS both in the longitudinal and in the multisubject study. This effect was reproducible with all statistical methods and all measures of connectivity under investigation. We conclude that despite intra- and interindividual variability, serial and cross-sectional assessment of functional connectivity reveals stable and reliable results. 相似文献
2.
高级脑活动的功能性核磁共振成像 总被引:4,自引:0,他引:4
功能性核磁共振成像技术可以显示大脑各个区域内静脉毛细血管中血液氧合状态所起的磁共振信号的小变化。使用fMRI的方法,可以在正常的活体上无损伤地实现大脑活动的功能定位,时空分辨率可分别达到秒和毫米数量级,尽管目前还面临一系列技术的困难,fMRI已经日益成为观察大脑活动,研究有脑的拓扑结构,进而揭示脑和思维关系的一种重要方法。 相似文献
3.
Yongri Piao 《Optics Communications》2011,284(3):747-755
In this paper, we propose a novel approach to enhance the recognition performance of a far and partially occluded three-dimensional (3-D) target in computational curving-effective integral imaging by using the direct pixel-mapping (DPM) method. With this scheme, the elemental image array (EIA) originally picked up from a far and partially occluded 3-D target can be converted into a new EIA just like the one virtually picked up from a target located close to the lenslet array. Due to this characteristic of DPM, resolution and quality of the reconstructed target image can be highly enhanced, which results in a significant improvement of recognition performance of a far 3-D object. In addition, the computational time required for reconstruction of a far 3-D target could be also reduced because the distance between the lenslet array and image plane is virtually shortened in the new EIA transformed by DPM. Experimental results reveal that image quality of the reconstructed target image and object recognition performance of the proposed system have been improved by 1.75 dB and 4.56% on the average in PSNR (peak-to-peak signal-to-noise ratio) and NCC (normalized correlation coefficient), respectively, compared to the conventional system. 相似文献
4.
5.
Brunecker P Villringer A Schultze J Nolte CH Jungehülsing GJ Endres M Steinbrink J 《Magnetic resonance imaging》2007,25(9):1300-1311
To prevent systematic errors in quantitative brain perfusion studies using dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), a reliable determination of the arterial input function (AIF) is essential. We propose a novel algorithm for correcting distortions of the AIF caused by saturation of the peak amplitude and discuss its relevance for longitudinal studies. The algorithm is based on the assumption that the AIF can be separated into a reliable part at low contrast agent concentrations and an unreliable part at high concentrations. This unreliable part is reconstructed, applying a theoretical framework based on a transport-diffusion theory and using the bolus-shape in the tissue. A validation of the correction scheme is tested by a Monte Carlo simulation. The input of the simulation was a wide range of perfusion, and the main aim was to compare this input to the determined perfusion parameters. Another input of the simulation was an AIF template derived from in vivo measurements. The distortions of this template was modeled via a Rician distribution for image intensities. As for a real DSC-MRI experiment, the simulation returned the AIF and the tracer concentration-dependent signal in the tissue. The novel correction scheme was tested by deriving perfusion parameters from the simulated data for the corrected and the uncorrected case. For this analysis, a common truncated singular value decomposition approach was applied. We find that the saturation effect caused by Rician-distributed noise leads to an overestimation of regional cerebral blood flow and regional cerebral blood volume, as compared to the input parameter. The aberration can be amplified by a decreasing signal-to-noise ratio (SNR) or an increasing tracer concentration. We also find that the overestimation can be successfully eliminated by the proposed saturation-correction scheme. In summary, the correction scheme will allow DSC-MRI to be expanded towards higher tracer concentrations and lower SNR and will help to increase the measurement to measurement reproducibility for longitudinal studies. 相似文献
6.
Mamoru Hatakeyama Yusuke Mochizuki Yoshinori Kita Kosuke Nishio Masanori Abe Hiroshi Handa 《Journal of magnetism and magnetic materials》2009,321(10):1364-1367
In this study, FG beads (ferrite nanoparticles in the core covered with poly-(styrene-co-glycidyl methacrylate)) were made into fluorescent magnetic carriers (FMCs) containing the fluorescent substance, europium ion (Eu3+) complex. The developed FMCs showed several notable features such as high fluorescence intensity and high dispersibility in water. More importantly, FMCs did not leak Eu3+ complex. It is expected that the FMCs will be a useful tool for biomolecular recognition and imaging and contribute to advancement of a wide range of research fields, including cell biology and molecular imaging. 相似文献
7.
This paper introduces a parallel measurement approach for fast infrared-based human temperature screening suitable for use in a large public area. Our key idea is based on the combination of simple image processing algorithms, infrared technology, and human flow management. With this multidisciplinary concept, we arrange as many people as possible in a two-dimensional space in front of a thermal imaging camera and then highlight all human facial areas through simple image filtering, image morphological, and particle analysis processes. In this way, an individual’s face in live thermal image can be located and the maximum facial skin temperature can be monitored and displayed. Our experiment shows a measured 1 ms processing time in highlighting all human face areas. With a thermal imaging camera having an FOV lens of 24° × 18° and 320 × 240 active pixels, the maximum facial skin temperatures from three people’s faces located at 1.3 m from the camera can also be simultaneously monitored and displayed in a measured rate of 31 fps, limited by the looping process in determining coordinates of all faces. For our 3-day test under the ambient temperature of 24–30 °C, 57–72% relative humidity, and weak wind from the outside hospital building, hyperthermic patients can be identified with 100% sensitivity and 36.4% specificity when the temperature threshold level and the offset temperature value are appropriately chosen. Appropriately locating our system away from the building doors, air conditioners and electric fans in order to eliminate wind blow coming toward the camera lens can significantly help improve our system specificity. 相似文献