首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the synthesis of periodic waveforms consisting of a train of pulses that are 0.83 cycles long and have an electric field pulse width of 0.44 fs using 7 Raman sidebands generated by molecular modulation in H2. We verify by optical correlation that the carrier-envelope phase is constant in these waveforms when they are synthesized from commensurate sidebands. The estimated overall shift of the carrier-envelope phase is less than 0.18 cycles from the first to the last pulse of nearly 10(6) pulses in the pulse train.  相似文献   

2.
We demonstrate efficient generation of high-order anti-Stokes Raman sidebands in a highly transient regime, using a pair of approximately 100-fs laser pulses tuned to Raman resonance with vibrational transitions in methane or hydrogen. The use of this technique looks promising for efficient subfemtosecond pulse generation.  相似文献   

3.
紫外波段飞秒激光脉冲是研究超快化学和超快物理相关过程的重要工具,实现波长可调谐的宽带紫外飞秒光脉冲将有助于推动超快动力学及相关领域的研究.本文报道了以两束400 nm的飞秒光脉冲作为级联四波混频的抽运源,在氧化镁晶体中产生9阶频率上转换和5阶频率下转换边带信号的实验结果.边带波长范围从350 nm到450 nm连续可调谐,这些边带信号的发散角和波长与级联四波混频理论预测结果吻合.紫外边带相对于入射光的整体转化效率约为1.2%.同时,高阶边带的光谱形状呈现高斯型,其谱宽理论上支持傅里叶转换极限脉宽为20—50 fs.本文展示了一种高效产生波长可连续调谐的紫外飞秒光脉冲的便捷方法,为基于紫外超短脉冲的相关研究提供了有效工具.  相似文献   

4.
We propose and theoretically analyze a new approach for generating and shaping 1-fs pulses. It combines the ideas of strong-field molecular optics and optimal control to manipulate light generation in a pump-probe Raman regime. Flexible phase control over the generated spectrum of about 3 eV width is achieved by controlling the input pulses and maximizing the coherence of medium excitation by adiabatically aligning molecules in the medium with a specially shaped pump pulse. The generated pulse is optimized for an output window, precompensating for its dispersion to all orders.  相似文献   

5.
Four-wave Raman mixing (FWRM) in molecular hydrogen was studied using chirped pump and Stokes pulses emitting at 802 and 1,203 nm, respectively. The group delay dispersion (GDD) of the anti-Stokes pulse was examined employing a frequency-resolved optical gating system at different GDDs of the pump and Stokes pulses (0 or ±1,000 fs2). As a result, the energy and the sign of GDD for the anti-Stokes pulse remained unchanged, when the pump and Stokes pulses had the GDD with the same sign. When the sign was not the same, the energy decreased and only the portion useful for resonant FWRM was converted into a Raman emission. This technique has a potential for use in compensation of dispersion by passing the negatively chirped high-order Raman sidebands through the optics with positive chirps in the spectral region from the deep-ultraviolet to the near-infrared, to generate multiple transform-limited Raman pulses and then to produce an ultrashort optical pulse by a Fourier synthesis of these Raman emissions.  相似文献   

6.
We demonstrate the generation of continuous-wave Stokes and anti-Stokes Raman sidebands including the three-primary-color (683, 532, and 436 nm) components. The Raman sidebands are generated through both stimulated and coherent anti-Stokes Raman scattering in a broadband high-finesse optical cavity filled with gas-phase hydrogen as a Raman-active medium and covering the entire visible spectral range (420–680 nm). The blue emission is considerably enhanced by matching the frequency with one of the longitudinal modes of the optical cavity, and high conversion efficiencies are observed when the coherent length corresponds to an integral multiple of the round-trip length of the optical cavity. This indicates that phase-matching plays a critical role in determining the efficiency of the Raman comb generation.  相似文献   

7.
Liu J  Zhang J  Kobayashi T 《Optics letters》2008,33(13):1494-1496
As broad as 12000 cm(-1) coherent anti-Stokes Raman scattering (CARS) light from ultraviolet to infrared was generated in a BBO crystal by using two crossing femtosecond laser pulses with 30% conversion efficiency. More than fifteenth-order anti-Stokes and second-order Stokes Raman sidebands were observed with nice Gaussian spatial mode. The effect of the crossing angle between two input beams on the spectrum and emitting angle of the Raman sidebands was studied in detail. Calculation shows that the phase-matching condition determines the frequencies and angles of the sidebands.  相似文献   

8.
We present a photonic crystal fiber (PCF)-based light source for generating tunable excitation pulses (pump and Stokes) that are applicable to coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The laser employed is an unamplified Ti:sapphire femtosecond laser oscillator. The CARS pump pulse is generated by spectral compression of a laser pulse in a PCF. The Stokes pulse is generated by redshifting a laser pulse in a PCF through the soliton self-frequency shift. This setup allows for probing up to 4000 cm(-1) with a spectral resolution of approximately 25 cm(-1). We characterize the stability and robustness of CARS microspectroscopy employing this light source.  相似文献   

9.
We obtained an array of multicolored femtosecond laser pulses with as many as 17 different colors that are spatially isolated. The mechanism of generation was proved to be cascaded four-wave mixing and with the following procedure. The output beam from a femtosecond laser was split into two. One of the two beams was pulse-compressed with a hollow core fiber and the intensity of the other was reduced. The two beams were synchronized and combined with a small crossing angle in a plate of fused silica glass plate. The wavelengths of the sidebands are continuously tunable from near-ultraviolet to near-infrared. The pulse duration, spatial mode, spectrum, and energy stability of the sidebands were studied. As many as fifteen spectral up-shifted pulses and two spectral downshifted pulses were obtained with spectral bandwidths broader than 1.8 octaves. Properties such as pulse energy as high as 1 μmJ, 45 fs pulse duration, smaller than 1.1 times of the diffraction limit Gaussian spatial profile, and better than 2% RMS power stability of the generated sidebands make it can be used in various experiments. The characterization showed that the sidebands have sufficiently good qualities to enable application to for various multicolor femtosecond laser experiments, for example, a multicolor pump-probe experiment.  相似文献   

10.
We study the effect of stimulated Raman scattering on four-wave mixing sidebands generated by pumping in the normal dispersion regime of a photonic crystal fiber. Q-switch nanosecond pulses at 1064 nm are used to generate signal and idler wavelengths by degenerate four-wave mixing. These three waves generate their own Raman Stokes orders, leading to a broadband supercontinuum.  相似文献   

11.
The technique of Raman conversion of sub-100 fs laser pulses based on excitation of active medium by two orthogonally polarized pulses has been developed for Raman lasers with a glass capillary. 52 fs Stokes pulse at the wavelength of 1200 nm has been generated by stimulated Raman scattering of 48 fs Ti:sapphire laser pulse at the wavelength of 800 nm in hydrogen. 13% energy conversion efficiency has been achieved at pulse repetition rate up to 2 kHz.  相似文献   

12.
We obtained an array of multicolored femtosecond laser pulses with as many as 17 different colors that are spatially isolated. The mechanism of generation was proved to be cascaded four-wave mixing and with the following procedure. The output beam from a femtosecond laser was split into two. One of the two beams was pulse-compressed with a hollow core fiber and the intensity of the other was reduced. The two beams were synchronized and combined with a small crossing angle in a plate of fused silica glass plate. The wavelengths of the sidebands are continuously tunable from near-ultraviolet to near-infrared. The pulse duration, spatial mode, spectrum, and energy stability of the sidebands were studied. As many as fifteen spectral up-shifted pulses and two spectral downshifted pulses were obtained with spectral bandwidths broader than 1.8 octaves. Properties such as pulse energy as high as 1 μmJ, 45 fs pulse duration, smaller than 1.1 times of the diffraction limit Gaussian spatial profile, and better than 2% RMS power stability of the generated sidebands make it can be used in various experiments. The characterization showed that the sidebands have sufficiently good qualities to enable application to for various multicolor femtosecond laser experiments, for example, a multicolor pump-probe experiment.  相似文献   

13.
Transient stimulated Raman scattering is used for the generation of a frequency shifted picosecond light pulse; part of this Raman shifted pulse is subsequently coherently scattered at a material excitation of a second Raman cell. Starting with the second harmonic pulse (tp = 4 ps) of a mode-locked Nd : glass laser system, both the stimulated and the coherently produced pulses have durations of 2.3 ps at different wavelengths. By the appropriate choice of the Raman medium pulses between 13 000 and 21 000 cm-1 can be generated. The coherent generation process minimizes the temporal jitter between the two pulses and allows to obtain a high time resolution of better than 0.3 ps in excite and probe experiments.  相似文献   

14.
Production of subfemtosecond optical pulses or pulses with predetermined sub-cycle shape of electric field demands a broadband coherent light source of few octaves of bandwidth. Previous work has shown that such a broadband light source can be obtained by the molecular modulation technique. In this article, we review theoretical and experimental improvements in this area: from increasing the efficiency of the generation process by use of hollow waveguides to increasing the number of sidebands generated by the Raman additive technique, or by combined vibrational and rotational Raman generation. We find that stimulated rotational Raman scattering can be either enhanced or suppressed at proper detunings from vibrational Raman resonance in the same molecular ensemble.  相似文献   

15.
A theory of real-time dependence of Raman scattering for a pulse-mode laser is developed within second-order perturbation theory and using the wavepacket terminology.We apply the theory to continuum Raman scattering for short and long pulses and varying pulse carrier frequency,For an initial ground virational state,it is shown that the rate of Raman emission as a funcition of time and pulse carrier frequency is structureless for all pulses,and for pulses that are longer than the dissociation time the rate also decays with the pulses.This is contrary to recently reported resonance fluorescence type structures at long times (M.Shapiro,J.Chem.Phys.99,2453(1993),We explain why such structures are unphysical for continuum Raman scattering.  相似文献   

16.
We investigate the propagation dynamics of nonlinear chirped optical laser pulses in a two-level medium. For certain chirp strength and chirp width, an incident 2π nonlinear chirped pulse will split into optical precursors and a stable self-induced transparency soliton. This is caused by the particular Fourier spectrum that includes not only central resonant frequency components but also high-frequency and low-frequency sidebands. Moreover, the effects of chirp parameters on the evolution of nonlinear chirped pulses are also discussed.  相似文献   

17.
The results of numerical modelling of cascaded compression of the first and second Stokes pulses during regenerative regime of the forward transient stimulated Raman amplification are presented for the case when the walk-off length of the first Stokes pulse due to group velocity mismatch is shorter than the length of the nonlinear medium. The influence of the initial amplitudes of the seed first Stokes pulses, its durations and its time delay with respect to the pump pulse, the Kerr nonlinearity of the medium on the conversion efficiency, duration and propagation factor M2 of the first and second Stokes pulse are studied. It is demonstrated that for the pump pulse duration of 1 ps the duration of the compressed second Stokes pulses in a KGW crystal near the beam axis may be approximately 14 times shorter than the pump pulse duration. It is shown that the propagation factor of the compressed pulses increases significantly because of complex spatial-temporal dynamics of compression and the influence of Kerr nonlinearity of Raman medium.  相似文献   

18.
Gorbach AV  Skryabin DV 《Optics letters》2006,31(22):3309-3311
We report families of discrete optical solitons in frequency space, or spectral-discrete solitons existing in a dispersive Raman medium, where individual sidebands are coupled by coherence. The associated time-domain patterns correspond either to trains of ultrashort pulses or to weakly modulated waves. We describe the physics behind the spectral localization and study soliton bifurcations, stability, and dynamics.  相似文献   

19.
Zhi M  Sokolov AV 《Optics letters》2007,32(15):2251-2253
We demonstrate broadband light generation by focusing two-color ultrashort laser pulses into a Raman-active crystal, lead tungstate (PbWO(4)). As many as 20 anti-Stokes and 2 Stokes fields are generated due to strong near-resonant excitation of a Raman transition. The generated spectrum extends from the infrared, through the visible region, to the ultraviolet, and it consists of discrete spatially separated sidebands. Our measurements confirm good mutual spatial and temporal coherence among the generated fields and open possibilities for synthesis of subfemtosecond light waveforms.  相似文献   

20.
We describe a method of ultrashort-pulse and ultrafast-pulse-train generation through optical parametric amplification of a laser beat wave. Numerical simulation shows that 250-fs laser pulses at 1.55 μm are generated from a beat-wave seeded optical parametric amplifier pumped by a 30-ps laser at 1064 nm. The pulse compression is attributable to sideband generation and parametric amplification under group velocity mismatch. Our experimental result confirms efficient generation of comb-like sidebands for the mixing waves from such an optical parametric amplifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号