首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interaction of Sb2O3 with HCl vapour and chlorine-containing organic flame retardants in the presence and absence of polymers (polypropylene, polyethylene) has been studied at 473–773 K. It has been shown that SbOCl is formed in thermally degrading mixtures in the condensed phase. The influence of SbOCl formation on flame retardant efficiency is discussed.  相似文献   

2.
In this tutorial review we summarize the standard approaches to describe aerosol formation from atmospheric vapours and subsequent growth - with a particular emphasis on the interplay between equilibrium thermodynamics and non-equilibrium transport. We review the use of thermodynamics in describing phase equilibria and formation of aerosol particles from supersaturated vapour via nucleation. We also discuss the kinetics of cluster formation and transport phenomena, which are used to describe dynamic mass transport between the gaseous and condensed phases in a non-equilibrium system. Finally, we put these theories into the context of atmospheric observations of aerosol formation and growth.  相似文献   

3.
Salient features of an in-depth comparative study of infrared and Raman spectra of CCl(4) in vapour, liquid and condensed phases are presented. Wavenumbers of nu(4), nu(1)+nu(4), nu(3) and 2 nu(3) modes of CCl(4) vapour in infrared and Raman spectra are found to be in good agreement. Analysis of the vibrational spectra of liquid CCl(4) together with the spectroscopic observations on solid CCl(4) at low temperatures reveal TD-TD interaction amongst various CCl(4) isotopes in condensed states. The concept of LO-TO splitting of dipole active nu(3) and nu(1)+nu(4) Fermi doublet have been invoked to explain several features of the vibrational spectra of liquid CCl(4). There is significant strengthening of Fermi resonance interaction between nu(3) and nu(1)+nu(4) modes of CCl(4) in condensed phases relative to that in vapour phase. The Fermi resonance interaction parameter W has been found to be independent of molecular environment.  相似文献   

4.
Kántor T  Pungor E  Sztatisz J  Bezúr L 《Talanta》1979,26(5):357-364
Aerosol particles formed from the vapour of electrothermally heated substances were introduced into an acetylene-air flame for atomization and detection. Thus individual observations could be made on condensed phase processes taking place in the furnace. Curves of absorbance vs. furnace temperature for several zinc compounds were recorded and compared with the corresponding thermoanalytical DTG-curves.  相似文献   

5.
Isothermal total pressure vs. liquid and vapour composition (P-x-y) equilibrium data are presented for the DMSO-H2O and DMSO-H2O-0.9 m NaClO4 systems. A modified transpiration technique was used to measure the saturated vapour pressures. The compositions of the equilibrium liquid and condensed vapour phases were determined by precision refractometry. The salt appreciably affects the activity coefficients of the solvent components; the effect is discussed in terms of interactions between the DMSO and H2O molecules and of the preferential solvation of the salt.  相似文献   

6.
Chemical ionization mass spectrometry of the title compounds demonstrates that the formation of the [M+H? CH3OH]+ ions is strongly influenced by the degree as well as the type of alkyl substitution of the α-carbon atom. The extent of cyclization (i.e. formation of [M+H? CH3OH]+) closely resembles that of the activated esters in condensed phases.  相似文献   

7.
Pyrolyses of the reactively flame retarded polystyrene copolymers styrene/diethyl(acryloyloxyethyl)phosphate(S/DEAEP), styrene/diethyl(methacryloyloxyethyl)phosphate(S/DEMEP), styrene/diethyl(methacryloyloxymethyl)phosphonate(S/DEMMP) and styrene/diethyl(acryloyloxymethyl)phosphonate(S/DEAMP) have been investigated with a view to obtaining information pertinent to the mechanism of their flame retardant behaviour. Studies were also carried out on the additive polystyrene systems containing triethylphosphate (TEP) and diethylethylphosphonate (DEEP) for comparison. All the systems contained 3.5 wt% of phosphorus. A range of techniques were used, namely TG with EGA, DSC, SEM, laser and microfurnace pyrolysis mass spectrometry and isothermal pyrolysis/GC-MS, to study the decompositions under a range of conditions. In the case of the additive systems, the additive was shown to be evolved before polymer decomposition occurred. Very little, if any, char residues were observed. Thus the main mechanism of fire retardant action of the phosphorus incorporated into the polystyrene as an additive would occur in the vapour phase. This mechanism prevailed regardless of whether the additive was a phosphate (TEP) or a phosphonate (DEEP). The effectiveness of the fire retardant action would be limited as the fire retardant and fuel did not volatilise together. There was evidence that some interaction occurred in the condensed phase. In all the copolymers the phosphorus content of the char was substantial. This is characteristic of the condensed phase fire retardant action of phosphorus. SEM studies showed the interior of the char to be a network of channels which would give the char a sponge-like interior which would enhance thermal insulation. The surfaces were relatively dense thus providing a barrier to escape for any gaseous products formed in the interior. Char formation and cross-linking are assumed to be the result of the presence of the strong phosphoric and phosphonic acids resulting from initial pyrolysis. Since phosphonic is the weaker acid, the polymer degradation and release of volatile products may be less inhibited in the case of the phosphonate-containing copolymers compared to the phosphate-containing copolymers. This is consistent with their shorter times to ignition. There was also evidence for some potential phosphorus vapour phase fire retardant action as phosphorus-containing species were identified among the pyrolysis products for all samples. The rate of volatile evolution from the copolymers was reduced compared to that of the corresponding additive system.  相似文献   

8.
Synthesis and performance of cyclic phosphorus-containing flame retardants   总被引:2,自引:0,他引:2  
A series of organo-cyclic phosphorus compounds were synthesized in an attempt to find an efficient flame retardant (FR) for acrylonitrile-butadiene-styrene (ABS). The success of synthesis was confirmed by 1H and 31P NMR. Thermogravimetric analysis (TGA) results reveal that cyclic phosphorus compounds synthesized in this study show almost one step degradation between 250 and 400 °C and are believed to work in the vapour phase rather than in the condensed phase. From UL-94 test, V-0 rating was achieved at 15-35 wt% loading of cyclic or cyclic alkyl phosphonate FR and no rating at 35 wt% loading of cyclic phosphate for ABS. On the other hand, a much lower loading (7.5%) was needed to obtain V-0 rating for polycarbonate when 3,9-diphenyl-3,9-dioxa-2,4,8,10-tetraoxa-3,9-diphosphaspiro-5,5-undecane (PBPP) was added as FR. All the results show that the flame retarding effect is strongly dependent on the P content of the FR incorporated. The flame retardant mechanism of cyclic phosphorus compounds is also discussed.  相似文献   

9.
By using a coarse-grain representation of the molecular electronic density, we demonstrate that the value of the condensed Fukui function at an atomic site is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the atom. The link between the formation of an electron-hole pair and the condensed Fukui function provides insights on the possible negativity of the Fukui function which is interpreted in terms of two phenomena: overscreening and over-strengthening.  相似文献   

10.
A procedure is presented to determine bond energies between the metal (Me) and substrate (S) components of binary alloys from characteristic underpotential deposition (UPD) potentials. The bond energy between Me and S atoms is one of the factors governing the deposition kinetics and structure of Me-S alloy deposits. The proposed procedure is based on the determination of the UPD potential for formation of a condensed two-dimensional (2D) phase of the less noble metal Me (the UPD metal) on the more noble metal S (the substrate). Making reasonable approximations, the sublimation enthalpy of the condensed 2D Me phase is obtained from the corresponding formation underpotential. From this sublimation enthalpy the bond energy of an atom of the UPD metal in a kink site position of the 2D Me phase is calculated. This value is used to calculate the bond energy (Me-S) between an Me atom and an S atom. The method is demonstrated using experimental data obtained in selected electrochemical UPD systems.  相似文献   

11.
A relationship is derived between CN concentration and atomization efficiency in the C2H2-N2O flame. The relationship is examined under various experimental conditions and β values are estimated for a number of elements. The possibility of complex vapour phase oxide formation by U is considered.  相似文献   

12.
The partitioning of an immiscible and volatile organic component between the gas and aqueous condensed phases of an aerosol is investigated using optical tweezers. Specifically, the phase segregation of immiscible decane and aqueous components within a single liquid aerosol droplet is characterized by brightfield microscopy and by spontaneous and stimulated Raman scattering. The internally mixed phases are observed to adopt equilibrium geometries that are consistent with predictions based on surface energies and interfacial tensions and the volume fractions of the two immiscible phases. In the limit of low organic volume fraction, the stimulated Raman scattering signature is consistent with the formation of a thin film or lens of the organic component on the surface of an aqueous droplet. By comparing the nonlinear spectroscopic signature with Mie scattering predictions for a core-shell structure, the thickness of the organic layer can be estimated with nanometer accuracy. Time-dependent measurements allow the evolving partitioning of the volatile organic component between the condensed and vapor phases to be investigated.  相似文献   

13.
The present work reports the experimental determination of the standard (p o = 0.1 MPa) molar enthalpies of formation in the condensed and gaseous phases, at T = 298.15 K, of 5- and 6-nitroindazole. These results were derived from the measurements of the standard molar energies of combustion, using a static bomb calorimeter and from the standard molar enthalpies of sublimation derived by the application of Clausius–Clapeyron to the temperature dependence of the vapour pressures measured by the Knudsen effusion technique. The results are interpreted in terms of the energetic contributions of the nitro groups in the different positions of the aromatic ring.  相似文献   

14.
An equivalent-cores-relaxation model is given for calculating atomic binding energies from orbital energies using only ground-state atomic properties. The agreement with experiment is excellent for the noble gases. On the basis of present knowledge of atomic relaxation, the phenomenon of “extra-atomic relaxation”, in which electronic charge is attracted toward a hole-state atom, is shown to have an important effect in lowering atomic core-level binding energies in condensed phases. This will affect the interpretation of most core-level binding energies measured to date.  相似文献   

15.
Several types of chemical reactions may participate in the evolution of free atoms in a tungsten furnace. Reactions may take place either in the homogeneous or heterogeneous phase. The assumed reactions may be classified into four types according to the phases in which they take place. Reactions occurring in the gaseous phase, i.e. in the inner volume of the furnace, are kinetically more significant. However, for atomization of easily volatile analytes heterogeneous reaction between gaseous compounds and between condensed salts of analytes and the solid surface of the furnace become significant. With regards to the reaction mechanisms during drying, pyrolysis and atomization of nitrates of volatile analytes, three basic types of chemical reactions may be assumed. Free atoms of analytes arise by evaporation of the elementary form of analytes at atomization temperature, where the particular analyte in its elementary form is produced by direct reduction of analyte nitrate by tungsten or by hydrogen at higher temperatures. Precursory reactions of atom formation are reduction reactions which occur between analyte nitrates and tungsten, between analyte nitrates and hydrogen, as well as reactions of thermal dissociation of relevant nitrates. The importance of particular types of precursory reactions for formation of metallic analytes or their oxides is documented by dependence of Gibbs energy values of particular reactions on the temperature.  相似文献   

16.
Several types of chemical reactions may participate in the evolution of free atoms in a tungsten furnace. Reactions may take place either in the homogeneous or heterogeneous phase. The assumed reactions may be classified into four types according to the phases in which they take place. Reactions occurring in the gaseous phase, i.e. in the inner volume of the furnace, are kinetically more significant. However, for atomization of easily volatile analytes heterogeneous reaction between gaseous compounds and between condensed salts of analytes and the solid surface of the furnace become significant. With regards to the reaction mechanisms during drying, pyrolysis and atomization of nitrates of volatile analytes, three basic types of chemical reactions may be assumed. Free atoms of analytes arise by evaporation of the elementary form of analytes at atomization temperature, where the particular analyte in its elementary form is produced by direct reduction of analyte nitrate by tungsten or by hydrogen at higher temperatures. Precursory reactions of atom formation are reduction reactions which occur between analyte nitrates and tungsten, between analyte nitrates and hydrogen, as well as reactions of thermal dissociation of relevant nitrates. The importance of particular types of precursory reactions for formation of metallic analytes or their oxides is documented by dependence of Gibbs energy values of particular reactions on the temperature.  相似文献   

17.
Synergy in flame retardancy of polyurethane foams between phosphorus-based flame retardant (aluminium phosphinate) and layered silicates has been investigated. We used pristine montmorillonite as well as ammonium modified clay (commercially available) and diphosphonium modified clay, which were synthesised by the intercalation of the quaternary diphosphonium salt according to a procedure reported here. The morphology of the foams was characterised through X-ray diffraction (XRD), while thermal properties were characterised by oxygen index test, cone calorimeter and thermogravimetric analysis (TGA). The morphological characterisation showed that pristine and diphosphonium modified clays are almost slightly intercalated, while ammonium modified one is very well dispersed. The results of thermal characterisation showed that in the presence of phosphinate enhancements of oxygen index, fire behaviour, measured by cone calorimeter, and thermal stability have been achieved. Phosphinate is therefore an efficient flame retardant for polyurethane foams and its flame retardancy action takes place in both condensed and gas phases. Pristine and ammonium modified layered silicate bring some enhancements of thermal stability while having no important effect in decreasing peak heat release rate (PHRR) and total heat evolved (THE) when used in conjunction with phosphinate; their main advantage is related to the enhancement of compactness of the char layer formed. Diphosphonium clay is instead effective in further improving the fire behaviour of the foams because of the flame retardancy action of phosphonium: both PHRR and THE were decreased. The analysis of cone calorimeter data showed that clays act through physical effect constituting a barrier at the surface which is effective in preventing or slowing the diffusion of volatiles and oxygen, while phosphinate and phosphonium are more effective owing to their combined action in both condensed and gas phases.  相似文献   

18.
A simplified mathematical analysis of atom formation was developed. For this purpose, the atomization process was considered as first order kinetics. Experimental studies were carried out. From the initial portion of experimental curves the Arrhenius-type rate constants, activation energies and frequency factors for atom formation reactions were calculated. The values obtained for activation energy could be attributed to the heat of vaporization of the test element nickel. The rate constants proportionality factors relating absorbance to the amount of metal vapour in the graphite furnace were found to be considerably dependent upon the temperature.  相似文献   

19.
The chemistry and kinetics of polyvinylchloride (PVC) degradation have been studied using thermal gravimetry and hyphenated spectroscopic methods to identify condensed phase and vapour phase products. A method of kinetic modelling has been devised to estimate Arrhenius parameters for the sequential and competing processes which comprise the thermal decomposition, and to plot concentrations of decomposition intermediates which make up the TG curve. MS and GC-MS have been used to relate the composition of volatile materials to the TG curve and FTIR has related this to changes in the condensed phase. The chemical studies have highlighted a char forming mechanism based on hydrogen disproportionation which results in carbon enrichment and the formation of aliphatic hydrocarbons.  相似文献   

20.
This work aims to evaluate the efficiency of halloysite as synergistic agent in an intumescent PP system based on a coated ammonium polyphosphate (IFR). The first part of the study analyses the thermal stability and fire performance of PP when using the intumescent formulation alone or in combination with the aluminosilicate nanotubes (HNTs). Cone calorimetry reveals that partial substitution of IFR by HNTs (3 wt.%) imparts substantial improvement in flame retardancy with reduced heat release rate and longer burning times. Additionally, a shift from V-1 to V-0 classification is achieved at the UL-94 test with only 1.5 wt.% HNTs. The second part provides a better understanding of the physical and chemical mechanisms of action of HNTs in the intumescent systems. The chemical evolution of the condensed phase during combustion is described by solid state NMR, and in particular using 2D NMR. Results indicate that halloysite speeds up the development of the intumescent shield, but also enhances its mechanical properties by physical reinforcement (i.e. aluminosilicate “skeleton-frame” for the phospho-carbonaceous structure) and/or by chemical interactions with IFR yielding to aluminophosphates. These new chemical species allow thermal stabilization of the char at high temperatures and provide good macro- and micro-structural properties. Both effects increase the mechanical strength of the protective layer during burning ensuring excellent heat and mass transfer limitations between gas and condensed phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号