首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This work has further shown that the collisional–radiative multi-level model for the analyte atom and ion could be approximated by the step-wise series model. The non-Boltzmann and non-Saha factors of Ca for 48 levels corresponding to radiative decay, radiative recombination, Penning ionization and absorption processes, respectively, as well as to their mutual processes occurring at the axial channel of inductively coupled plasma and at an observation height of 15 mm above the load coil, were calculated. It was found that the high level relative to low level is over populated.  相似文献   

3.
Experimental measurements of the spectroscopic temperature and the electron temperature in low-pressure rare gas plasmas sustained by a microwave generator operating at 2450 MHz have revealed divergent values. These measurements have been interpreted on the basis of a radiative recombination model originally proposed by Schlüter. The importance of Penning ionization by metastable rare gas atoms in the excitation of foreign atoms has been discussed in terms of this model.On the basis of the radiative recombination model for these plasmas, the parameters of analytical importance are the concentration and energy of electrons in a high energy electron group, the concentration and energy of electrons in a low energy electron group, and the concentration of metastable rare gas atoms. Measurements of the spectroscopic temperature of an argon plasma have revealed that the energy of electrons in the low energy electron group is not greatly affected by applied microwave power and pressure over the range from 1–25 torr. The energy of electrons in the high energy electron group is not greatly affected by pressure and applied microwave power over the range studied, but has been shown to depend on the ionization potential of the plasma gas. The total electron concentration is not greatly affected by gas pressure for low applied powers, but varies with applied power, particularly at low pressures. The concentration of metastable argon atoms has been shown to depend on both the applied power and pressure. Studies of the excitation of mercury by these plasmas have led to results which are consistent with the radiative recombination model.  相似文献   

4.
A method is described for the evaluation of proposed analyte ionization and excitation mechanisms in the analytical ICP. In the method, a steady-state kinetic expression is derived for each proposed mechanism; the resulting expression predicts a linear relationship between analyte emission and the concentrations or concentration products of species important in the excitation and deactivation processes. The application of this approach to Ca ionization and excitation is described for the region 15 mm above the load coil and 0–5 mm from the center of the plasma. Importantly, the concentration of ground-state Ca seems not to be important in the production of either excited Ca atoms or ions. Rather, Ca atom excitation appears to occur by means of three-body or radiative Ca+-electron recombination. In contrast, Ca+ seems to be excited directly by electron impact. Among the mechanisms evaluated here, depopulation of excited-state calcium species by collisional deactivation appears to be less significant than radiative decay to the ground state.  相似文献   

5.
6.
The survey is devoted to general results for polarization free–free and free–bound radiative transitions in collisions of charged particles with heavy atoms and ions following from statistical atomic models. The atomic plasma model results for dynamic atomic polarizabilities are presented. Polarization Bremsstrahlung in collisions of fast and moderate energy electrons with Thomas–Fermi atoms is analyzed in details. A new polarization electron-heavy ions recombination channel is considered and compared with known radiative recombination channel. It is shown that recombination channels can be compared or even dominates over standards static radiation channels. Polarization radiation of fast multicharged ions in condensed media is also under consideration.  相似文献   

7.
Independent pairs (IP) and Monte Carlo (MC) simulations are employed to model experimental femtosecond time-resolved pump-probe spectroscopic data on the geminate recombination dynamics of solvated electrons in liquid-to-supercritical water. The hydrated electron was created by two-photon ionization of the neat fluid with a total ionization energy of 9.3 eV. In both numerical approaches, the ejection length, , (i.e. the distance from the ionization core, at which the electron is thermally and spatially localized) is used as the primary adjustable fitting parameter that can bring both model simulations into quantitative agreement with the ultrafast kinetic experiment. The influence of the thermodynamic conditions on the ejection length and on the recombination mechanism is discussed. Whereas in the compressed liquid associated with a high dielectric constant (ε ≥ 20), the electron recombines predominantly with the OH radical, the dissociative recombination via charge neutralization with the hydronium cation takes over at small dielectric constants (ε < 20). The importance of charge-dipole interactions for Monte-Carlo simulations of the recombination reactions of the hydrated electrons in the low-permittivity region is stressed.  相似文献   

8.
9.
In this work, we propose a new theoretical approach to modeling the electron-ion recombination processes in ionization tracks in liquid argon at 87 K. We developed a computer simulation method using realistic models of charge transport and electron-ion reactions. By introducing the concept of one-dimensional periodicity in the track, we are able to model very large cylindrical structures of charged particles. We apply our simulation method to calculate the electron escape probability as a function of the initial ionization density in the track. The results are in quantitative agreement with experiment for radiation tracks of relatively high ionization density. At low ionization densities, the simulation results slightly overestimate the experimental data. We discuss possible reasons for this disagreement and conclude that it can be explained by the role of δ tracks (short tracks of secondary electrons) in electron-ion recombination processes. We introduce an approximate model that takes into account the presence of δ tracks and allows the experimental data obtained from a liquid-argon ionization detector to be reproduced over a wide range of ionization density.  相似文献   

10.
A cage model has been presented to describe the kinetics of recombination of radicals in solid polymer. The theory includes Torrey's treatment for jump diffusion and radiative boundary condition in the diffusion equation to account for the hindrance to the diffusion of macroradicals and the finite cage process of recombination reaction, respectively. The result has been applied to the interpretation of data on the decay of allyl radical in irradiated polyethylene.  相似文献   

11.
A new quasi-resonant radiative dielectronic recombination (RDR) process is formulated as an off-shell extension of the dielectronic recombination. It is an electron-ion recombination process in which dielectronic-excitation capture is accompanied by simultaneous radiation emission, and can occur at all continuum energies of the electron being captured. The RDR can be the dominant mode of recombination at off-resonance energy regions, and may provide an important distortion correction to the direct recombination. The distinct signature of the RDR is the quasi-discrete low energy x-rays emitted during the capture, shifted down in energy by the excitation energies of the core electrons. The analog of the RDR must also take place in the ion-atom collisions, as radiative transfer excitation (XTE). Evaluation of the RDR cross section is difficult because of the correlated nature of the transition operator, but detailed qualitative discussions of the RDR are presented. A crude estimate of the cross section is obtained and compared with the other recombination modes. The radiative Auger effect is roughly an inverse of RDR, and the charge dependence of its cross section is improved, using a correlated vertex.  相似文献   

12.
Ion recombination in matrix-assisted laser desorption/ionization (MALDI) is as important as any ion formation process in determining the quantity of ions observed but has received comparatively little attention. Molecular dynamics simulations are used here to investigate some models for recombination, including a Langevin-type model, a soft threshold model and a tunneling model. The latter was found to be superior due to its foundations in a widespread physical phenomenon, and its lack of excessive sensitivity to parameter choice. Tunneling recombination in the Marcus inverted region may be a major reason why MALDI is a viable analytical method, by allowing ion formation to exceed ion loss on the time scale of the plume expansion. Ion velocities, photoacoustic transients and pump-probe measurements might be used to investigate the role of recombination in different MALDI matrices, and to select new matrices.  相似文献   

13.
This paper presents a modeling attempt related to low-pressure plasma spraying processes which find increasing applications for materials processing. After a review of the various models for ionization and recombination processes, a two-temperature model for argon plasmas in chemical (ionization) nonequilibrium is established using finite rate chemistry. Results of sample calculations manifest departures from kinetic as well as chemical equilibrium, demonstrating that the conventional models based on the LTE (local thermodynamic equilibrium) assumption cannot provide proper prediction for low-pressure plasma jets.  相似文献   

14.
We compute the energy emitted in the radiative recombination process (or radiated power loss) of point particles of chargeZe and ?Z′e with nonrelativistic velocities and reduced massM, useful in a great variety of problems, averaged over Maxwellian and non-Maxwellian distributions. This has been accomplished using a recent parametrization, obtained by us, of the nonrelativistic, radiative recombination cross section in the dipole approximation, valid for all values of the energy.  相似文献   

15.
We study the interplay between Auger effects and ionization processes in the limit of strong electronic confinement in core/shell CdSe/ZnS semiconductor nanocrystal quantum dots. Spectrally resolved fluorescence decay measurements reveal a monotonic increase of the photoluminescence decay rate on excitation density. Our results suggest that Auger recombination accelerates ionization processes that lead to the occupation of dark, nonemissive nanocrystal states. A model is proposed in the quantized Auger regime describing these experimental observations and providing an estimate of the Auger assisted ionization rates.  相似文献   

16.
For the ionization of gas mixtures, several ionization sources can be coupled to an ion mobility spectrometer. Radioactive sources, e.g. beta radiators like 63Ni and 3H, are the most commonly used ionization sources. However, due to legal restrictions radioactive ionization sources are not applicable in certain applications. Non-radioactive alternatives are corona discharge ionization sources or photoionization sources. However, using an electron gun allows regulation of ion production rate, ionization time and recombination time by simply changing the operating parameters, which can be utilized to enhance the analytical performance of ion mobility spectrometers. In this work, the impact of an ionization source parameter variation on the ion mobility spectrum is demonstrated. Increasing the ion production rate, the amount of the generated ions increases leading to higher signal intensity while the noise remains constant. Thus, the signal to noise ratio can be increased, leading to better limits of detection. In a next step, the ion production rate is kept constant while the influence of ionization time on the ion mobility spectrum is investigated. It is shown, that varying the ionization time allows the determination of the reaction rate constants as additional information to the ion mobility. Furthermore, we show the prevention of discrimination processes by using short ionization times combined with an increased ion production rate. Thus, the limit of detection for benzene in presence of toluene is improved. Additionally, it is shown that using ion-ion recombination leads to the detection of the ion species with the highest proton affinity at higher recombination times while the low proton affine ions already recombined. Thus, the measurement of the ion mobility spectra at a defined recombination time allows a suppression of disturbing low proton affine substances.  相似文献   

17.
Detailed spectra highlighting the neutral atom emission characteristics (i.e. I lines) for Cu, Zn, Ag and Cd in a glow discharge device are presented in this study. A particular focus is the presentation of spectra that document the many high excitation energy neutral atom lines that are observed in these spectra. For Cu, several spectral lines originating from levels close to the ionization potential of copper are observed including lines from the so-called autoionizing levels which are actually just above the ionization potential for copper. Generally similar results are seen for Ag, Zn and Cd, including the observation of many high excitation energy neutral atom lines of Zn originating from the upper levels on the triplet side of the energy level diagram. The spectral data point to ion–electron recombination processes followed by stepwise de-excitation and radiative decay as a key mechanism in setting the spectral character of neutral atom emission in a glow discharge device. Unambiguous identification of spectral lines for specific transitions was facilitated by the acquisition of all spectral data utilizing a UV–visible Fourier transform spectrometer. This spectrometer provided complete and continuous coverage of the spectral region from 200 to 650 nm and allowed spectral lines to be identified with an accuracy of 1–2 pm.  相似文献   

18.
The dynamics of the radiative recombination of charge carriers in CdS nanoparticles stabilized in aqueous solutions of polyethyleneimine was studied. It was shown that decay of the photoluminescence of the nanoparticles is characterized by a set of time constants in the range of 10−1-102ns, while its rate depends on the energy of the radiation quanta. This relationship is interpreted as the result of competition between the processes of radiative recombination and vibrational dissipation of the excitation energy.  相似文献   

19.
A kinetic model is developed for the dynamic events occurring within an atmospheric sampling glow discharge that affect its performance as an ion source for analytical mass spectrometry. The differential equations incorporate secondary electron generation and thermalization, reagent and analyte ion formation via electron capture and ion-molecule reactions, ion loss via recombination processes, diffusion, and ion-molecule reactions with matrix components, and the sampling and pumping parameters of the source. Because the ion source has a flow-through configuration, the number densities of selected species can be estimated by applying the steady-state assumption. However, understanding of its operation is aided by knowledge of the dynamic behavior, so numerical methods are applied to examine the time dependence of those species as well. As in other plasma ionization sources, the ionization efficiency is essentially determined by the ratio of the relevant ion formation and recombination rates. Although thermal electron and positive reagent ion number densities are comparable, the electron capture/ion-molecule reaction rate coefficient ratio is normally quite large and the ion-electron recombination rate coefficient is about an order of magnitude greater than that for ion-ion recombination. Consequently, the efficiency for negative analyte ion formation via electron capture is generally superior to that for positive analyte ion generation via ion-molecule reaction. However, the efficiency for positive analyte ion formation should be equal to or better than that for negative analyte ions when both ionization processes occur via ion-molecule reaction processes (with comparable rate coefficients), since the negative reagent ion density is considerably less than that for positive reagent ions. Furthermore, the particularly high number densities of thermal electrons and reagent ions leads to a large dynamic range of linear response for the source. Simulation results also suggest that analyte ion number densities might be enhanced by modification of the standard physical and operating parameters of the source.  相似文献   

20.
Porous silicon (PS) films were investigated by Raman, and photoluminescence (PL) spectroscopies using different laser excitations: 488.0, 514.5, 632.8, and 782.0 nm. The analysis of the first-order and second-order Raman spectra have shown that the band gaps of the PS films are indirect as in the bulk c-Si. The Raman phonon and the PL spectra as well as the spectral distribution of the linear polarisation degree (LPD) of PS layers have shown to be dependent on the laser excitation energy. This dependence cannot be explained within the quantum confinement model. A mechanism for the PL emission in PS layers is presented in which the radiative recombination of electron-hole pairs occurs in localised centres (the Si-O-SiR moieties) at the pore/crystallite interface. These quasi-molecular centres are Jahn-Teller active, i.e. the radiative recombination is a phonon-assisted phenomena. The adsorption of gas molecules on the porous silicon surface was studied throughout photoluminescence quenching effect. The adsorption experiments were performed at 10(-6) bar of pressure using gas molecules of organic solvents. In all these cases, the PL intensity was recovered after gas desorption. The PL quenching effect was explained in the sense of electron transfer mechanism (ET).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号